Normalized defining polynomial
\( x^{14} + 16 x^{12} - 44 x^{11} - 22 x^{10} - 316 x^{9} - 56 x^{8} + 1628 x^{7} + 2241 x^{6} - 9220 x^{5} + 38232 x^{4} - 134240 x^{3} + 292724 x^{2} - 281808 x + 148464 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-131627295869636184113152=-\,2^{21}\cdot 251^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 251$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{5}{24} a^{4} + \frac{1}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{96} a^{9} - \frac{1}{96} a^{8} - \frac{1}{48} a^{7} + \frac{1}{48} a^{6} + \frac{7}{96} a^{5} - \frac{19}{96} a^{4} - \frac{19}{48} a^{3} - \frac{11}{48} a^{2} - \frac{1}{4}$, $\frac{1}{96} a^{10} + \frac{1}{96} a^{8} + \frac{1}{12} a^{7} + \frac{1}{96} a^{6} + \frac{5}{24} a^{5} + \frac{19}{96} a^{4} - \frac{1}{24} a^{3} + \frac{3}{16} a^{2} - \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{96} a^{11} + \frac{1}{96} a^{8} + \frac{11}{96} a^{7} + \frac{5}{48} a^{6} + \frac{5}{24} a^{5} - \frac{17}{96} a^{4} - \frac{1}{12} a^{3} + \frac{23}{48} a^{2} + \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{480} a^{12} + \frac{1}{240} a^{10} + \frac{1}{480} a^{9} + \frac{1}{96} a^{8} + \frac{1}{48} a^{7} + \frac{7}{240} a^{6} - \frac{17}{480} a^{5} - \frac{5}{48} a^{4} - \frac{1}{240} a^{3} - \frac{19}{40} a^{2} - \frac{3}{20} a - \frac{3}{10}$, $\frac{1}{9927391652497601780160} a^{13} + \frac{2665887838196169711}{3309130550832533926720} a^{12} + \frac{33406381759620547}{9927391652497601780160} a^{11} - \frac{33431777049375805193}{9927391652497601780160} a^{10} + \frac{40308987769240382453}{9927391652497601780160} a^{9} - \frac{37821888372720548467}{1985478330499520356032} a^{8} - \frac{48873493946380775371}{9927391652497601780160} a^{7} + \frac{149923596847638311837}{1985478330499520356032} a^{6} + \frac{296183697170622111377}{4963695826248800890080} a^{5} - \frac{606951677571618262771}{4963695826248800890080} a^{4} - \frac{15243831127764578393}{47727844483161547020} a^{3} + \frac{22533003061968568163}{206820659427033370420} a^{2} + \frac{559046717234422567}{1590928149438718234} a - \frac{13694256686521807907}{103410329713516685210}$
Class group and class number
$C_{13}\times C_{26}$, which has order $338$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 248174.330546 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-502}) \), 7.1.8096384512.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.8096384512.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 251 | Data not computed | ||||||