Normalized defining polynomial
\( x^{14} + 77 x^{12} - 42 x^{11} + 3836 x^{10} + 392 x^{9} + 135919 x^{8} + 93620 x^{7} + 3408482 x^{6} + 3494218 x^{5} + 57312920 x^{4} + 57285116 x^{3} + 584163825 x^{2} + 412653556 x + 2769616973 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1287998476392981798480681859039232=-\,2^{14}\cdot 7^{24}\cdot 17^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $231.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3332=2^{2}\cdot 7^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3332}(1,·)$, $\chi_{3332}(2787,·)$, $\chi_{3332}(2311,·)$, $\chi_{3332}(2857,·)$, $\chi_{3332}(1835,·)$, $\chi_{3332}(2381,·)$, $\chi_{3332}(1359,·)$, $\chi_{3332}(1905,·)$, $\chi_{3332}(883,·)$, $\chi_{3332}(1429,·)$, $\chi_{3332}(407,·)$, $\chi_{3332}(953,·)$, $\chi_{3332}(477,·)$, $\chi_{3332}(3263,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{31} a^{10} - \frac{8}{31} a^{9} + \frac{13}{31} a^{8} - \frac{7}{31} a^{6} + \frac{7}{31} a^{5} + \frac{8}{31} a^{4} + \frac{9}{31} a^{3} - \frac{15}{31} a^{2} - \frac{8}{31} a$, $\frac{1}{31} a^{11} + \frac{11}{31} a^{9} + \frac{11}{31} a^{8} - \frac{7}{31} a^{7} + \frac{13}{31} a^{6} + \frac{2}{31} a^{5} + \frac{11}{31} a^{4} - \frac{5}{31} a^{3} - \frac{4}{31} a^{2} - \frac{2}{31} a$, $\frac{1}{589} a^{12} + \frac{3}{589} a^{11} + \frac{5}{589} a^{10} - \frac{156}{589} a^{9} + \frac{227}{589} a^{8} - \frac{256}{589} a^{7} - \frac{10}{589} a^{6} - \frac{149}{589} a^{5} - \frac{268}{589} a^{4} + \frac{268}{589} a^{3} - \frac{203}{589} a^{2} - \frac{237}{589} a - \frac{4}{19}$, $\frac{1}{6901204867413778152222591967337933522017} a^{13} - \frac{954698972932630362790260260493473265}{6901204867413778152222591967337933522017} a^{12} + \frac{907503075259764767488134807634917862}{222619511852057359749115869914126887807} a^{11} + \frac{14582609220026027539217298836004479355}{6901204867413778152222591967337933522017} a^{10} + \frac{2443389334481678946629547528104334785267}{6901204867413778152222591967337933522017} a^{9} - \frac{1168303279095547596418105498204767192609}{6901204867413778152222591967337933522017} a^{8} + \frac{2875904735228085536963324242876050155568}{6901204867413778152222591967337933522017} a^{7} + \frac{1732801725074849613521918211334267175983}{6901204867413778152222591967337933522017} a^{6} - \frac{1420269199520654297043988760605186384208}{6901204867413778152222591967337933522017} a^{5} + \frac{2703493035993931307968370457015995139855}{6901204867413778152222591967337933522017} a^{4} - \frac{601375195869602119600808976392086612185}{6901204867413778152222591967337933522017} a^{3} + \frac{1771523893423220129303542002473961175539}{6901204867413778152222591967337933522017} a^{2} - \frac{676898986926483021631007160395742415447}{6901204867413778152222591967337933522017} a + \frac{29991628422956612980637844090873862761}{222619511852057359749115869914126887807}$
Class group and class number
$C_{1515892}$, which has order $1515892$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $17$ | 17.14.7.1 | $x^{14} - 9826 x^{8} + 24137569 x^{2} - 3693048057$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |