Properties

Label 14.0.12758787459...4464.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{14}\cdot 211^{12}$
Root discriminant $196.46$
Ramified primes $2, 211$
Class number $5923$ (GRH)
Class group $[5923]$ (GRH)
Galois group $C_{14}$ (as 14T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![21743569, 0, 28708425, 0, 13082270, 0, 2642670, 0, 250587, 0, 10574, 0, 181, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 181*x^12 + 10574*x^10 + 250587*x^8 + 2642670*x^6 + 13082270*x^4 + 28708425*x^2 + 21743569)
 
gp: K = bnfinit(x^14 + 181*x^12 + 10574*x^10 + 250587*x^8 + 2642670*x^6 + 13082270*x^4 + 28708425*x^2 + 21743569, 1)
 

Normalized defining polynomial

\( x^{14} + 181 x^{12} + 10574 x^{10} + 250587 x^{8} + 2642670 x^{6} + 13082270 x^{4} + 28708425 x^{2} + 21743569 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-127587874597583234917080811454464=-\,2^{14}\cdot 211^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $196.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 211$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(844=2^{2}\cdot 211\)
Dirichlet character group:    $\lbrace$$\chi_{844}(1,·)$, $\chi_{844}(355,·)$, $\chi_{844}(423,·)$, $\chi_{844}(777,·)$, $\chi_{844}(171,·)$, $\chi_{844}(199,·)$, $\chi_{844}(781,·)$, $\chi_{844}(269,·)$, $\chi_{844}(359,·)$, $\chi_{844}(593,·)$, $\chi_{844}(691,·)$, $\chi_{844}(545,·)$, $\chi_{844}(123,·)$, $\chi_{844}(621,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{437} a^{10} + \frac{159}{437} a^{8} + \frac{172}{437} a^{6} - \frac{94}{437} a^{4} - \frac{145}{437} a^{2} - \frac{37}{437}$, $\frac{1}{437} a^{11} + \frac{159}{437} a^{9} + \frac{172}{437} a^{7} - \frac{94}{437} a^{5} - \frac{145}{437} a^{3} - \frac{37}{437} a$, $\frac{1}{176547490216060631} a^{12} + \frac{70082485228602}{176547490216060631} a^{10} - \frac{36928284836716600}{176547490216060631} a^{8} + \frac{25021798803274065}{176547490216060631} a^{6} + \frac{82307643927843571}{176547490216060631} a^{4} - \frac{23946947795988423}{176547490216060631} a^{2} + \frac{76886605475281979}{176547490216060631}$, $\frac{1}{823240946877490722353} a^{13} + \frac{534560539134766851}{823240946877490722353} a^{11} - \frac{400028901301078688366}{823240946877490722353} a^{9} + \frac{355895878215534496238}{823240946877490722353} a^{7} + \frac{377261678531954035816}{823240946877490722353} a^{5} - \frac{149556439170131771976}{823240946877490722353} a^{3} - \frac{106737172967075524317}{823240946877490722353} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5923}$, which has order $5923$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{11649033007}{16645590045443329} a^{13} - \frac{2027308390159}{16645590045443329} a^{11} - \frac{109068630751613}{16645590045443329} a^{9} - \frac{2162312854070618}{16645590045443329} a^{7} - \frac{15906579524131748}{16645590045443329} a^{5} - \frac{46053542886267262}{16645590045443329} a^{3} - \frac{54306257258554536}{16645590045443329} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2943138.716633699 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{14}$ (as 14T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 14
The 14 conjugacy class representatives for $C_{14}$
Character table for $C_{14}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 7.7.88245939632761.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.14.0.1}{14} }$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/7.14.0.1}{14} }$ ${\href{/LocalNumberField/11.14.0.1}{14} }$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.14.0.1}{14} }$ ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.14.0.1}{14} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/59.14.0.1}{14} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.14.38$x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$$2$$7$$14$$C_{14}$$[2]^{7}$
211Data not computed