Normalized defining polynomial
\( x^{14} + 181 x^{12} + 10574 x^{10} + 250587 x^{8} + 2642670 x^{6} + 13082270 x^{4} + 28708425 x^{2} + 21743569 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-127587874597583234917080811454464=-\,2^{14}\cdot 211^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(844=2^{2}\cdot 211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{844}(1,·)$, $\chi_{844}(355,·)$, $\chi_{844}(423,·)$, $\chi_{844}(777,·)$, $\chi_{844}(171,·)$, $\chi_{844}(199,·)$, $\chi_{844}(781,·)$, $\chi_{844}(269,·)$, $\chi_{844}(359,·)$, $\chi_{844}(593,·)$, $\chi_{844}(691,·)$, $\chi_{844}(545,·)$, $\chi_{844}(123,·)$, $\chi_{844}(621,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{437} a^{10} + \frac{159}{437} a^{8} + \frac{172}{437} a^{6} - \frac{94}{437} a^{4} - \frac{145}{437} a^{2} - \frac{37}{437}$, $\frac{1}{437} a^{11} + \frac{159}{437} a^{9} + \frac{172}{437} a^{7} - \frac{94}{437} a^{5} - \frac{145}{437} a^{3} - \frac{37}{437} a$, $\frac{1}{176547490216060631} a^{12} + \frac{70082485228602}{176547490216060631} a^{10} - \frac{36928284836716600}{176547490216060631} a^{8} + \frac{25021798803274065}{176547490216060631} a^{6} + \frac{82307643927843571}{176547490216060631} a^{4} - \frac{23946947795988423}{176547490216060631} a^{2} + \frac{76886605475281979}{176547490216060631}$, $\frac{1}{823240946877490722353} a^{13} + \frac{534560539134766851}{823240946877490722353} a^{11} - \frac{400028901301078688366}{823240946877490722353} a^{9} + \frac{355895878215534496238}{823240946877490722353} a^{7} + \frac{377261678531954035816}{823240946877490722353} a^{5} - \frac{149556439170131771976}{823240946877490722353} a^{3} - \frac{106737172967075524317}{823240946877490722353} a$
Class group and class number
$C_{5923}$, which has order $5923$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11649033007}{16645590045443329} a^{13} - \frac{2027308390159}{16645590045443329} a^{11} - \frac{109068630751613}{16645590045443329} a^{9} - \frac{2162312854070618}{16645590045443329} a^{7} - \frac{15906579524131748}{16645590045443329} a^{5} - \frac{46053542886267262}{16645590045443329} a^{3} - \frac{54306257258554536}{16645590045443329} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2943138.716633699 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.88245939632761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 211 | Data not computed | ||||||