Normalized defining polynomial
\( x^{14} + 378 x^{12} - 847 x^{11} + 43729 x^{10} - 176134 x^{9} + 1941534 x^{8} - 8999703 x^{7} + 40933963 x^{6} - 146975164 x^{5} + 333745951 x^{4} - 521303860 x^{3} + 684084919 x^{2} - 722816269 x + 758859649 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-127310161428861423711034656546331=-\,7^{25}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1813=7^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1813}(1,·)$, $\chi_{1813}(258,·)$, $\chi_{1813}(260,·)$, $\chi_{1813}(517,·)$, $\chi_{1813}(519,·)$, $\chi_{1813}(776,·)$, $\chi_{1813}(778,·)$, $\chi_{1813}(1035,·)$, $\chi_{1813}(1037,·)$, $\chi_{1813}(1294,·)$, $\chi_{1813}(1296,·)$, $\chi_{1813}(1553,·)$, $\chi_{1813}(1555,·)$, $\chi_{1813}(1812,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{31} a^{11} - \frac{3}{31} a^{10} - \frac{4}{31} a^{9} + \frac{13}{31} a^{8} + \frac{8}{31} a^{7} + \frac{14}{31} a^{6} - \frac{13}{31} a^{5} - \frac{6}{31} a^{4} + \frac{6}{31} a^{3} + \frac{2}{31} a^{2} + \frac{14}{31} a - \frac{1}{31}$, $\frac{1}{8153} a^{12} + \frac{56}{8153} a^{11} + \frac{2671}{8153} a^{10} - \frac{3416}{8153} a^{9} + \frac{89}{263} a^{8} + \frac{300}{8153} a^{7} - \frac{3248}{8153} a^{6} - \frac{1207}{8153} a^{5} + \frac{613}{8153} a^{4} + \frac{1689}{8153} a^{3} - \frac{1635}{8153} a^{2} - \frac{1810}{8153} a - \frac{1671}{8153}$, $\frac{1}{291203384660975725422946323433516545887639841336134669293} a^{13} - \frac{7976200909805792964635800919724773645125808656668109}{291203384660975725422946323433516545887639841336134669293} a^{12} - \frac{26843101891096236536035405318238029052396695709941891}{9393657569708894368482139465597307931859349720520473203} a^{11} - \frac{116440963730945396486441428702936886150047311580242431072}{291203384660975725422946323433516545887639841336134669293} a^{10} - \frac{4564457244831564914157322990861954469720985648562530770}{9393657569708894368482139465597307931859349720520473203} a^{9} - \frac{8902675533212325351496867689091627581369328133863516724}{291203384660975725422946323433516545887639841336134669293} a^{8} + \frac{1037123952695865379256328516101290016562116124124306319}{4346319174044413812282780946768903669964773751285592079} a^{7} + \frac{81286956924582189478306283965356283376578853120401518465}{291203384660975725422946323433516545887639841336134669293} a^{6} - \frac{3200881342827743113245209490412402533083675913213007803}{291203384660975725422946323433516545887639841336134669293} a^{5} + \frac{101799487846618050333878884812331234735114596616566722672}{291203384660975725422946323433516545887639841336134669293} a^{4} + \frac{14666761870352059037680814124148647083145982400272987189}{291203384660975725422946323433516545887639841336134669293} a^{3} + \frac{46253870035747507813442378708190422271745597843221568258}{291203384660975725422946323433516545887639841336134669293} a^{2} - \frac{94920716018554925996794515087953059390782708245905144328}{291203384660975725422946323433516545887639841336134669293} a + \frac{49052416954586446188620989762894269394174800329277210031}{291203384660975725422946323433516545887639841336134669293}$
Class group and class number
$C_{1044572}$, which has order $1044572$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-259}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $37$ | 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |