Normalized defining polynomial
\( x^{14} + 6x^{12} - 85x^{10} + 355x^{8} - 695x^{6} + 1091x^{4} - 609x^{2} + 535 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-12545167784987734375\)
\(\medspace = -\,5^{7}\cdot 107^{7}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(23.13\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}107^{1/2}\approx 23.130067012440755$ | ||
Ramified primes: |
\(5\), \(107\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-535}) \) | ||
$\card{ \Gal(K/\Q) }$: | $14$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15}a^{6}+\frac{7}{15}a^{4}+\frac{1}{15}a^{2}-\frac{1}{3}$, $\frac{1}{30}a^{7}+\frac{7}{30}a^{5}-\frac{1}{2}a^{4}+\frac{1}{30}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{30}a^{8}-\frac{1}{30}a^{6}-\frac{1}{2}a^{5}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{13}{30}a^{2}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{30}a^{9}-\frac{1}{30}a^{6}+\frac{2}{5}a^{5}+\frac{4}{15}a^{4}-\frac{2}{5}a^{3}+\frac{7}{15}a^{2}+\frac{1}{6}a+\frac{1}{6}$, $\frac{1}{150}a^{10}-\frac{1}{150}a^{8}+\frac{1}{150}a^{6}-\frac{28}{75}a^{4}+\frac{17}{50}a^{2}-\frac{1}{2}a+\frac{7}{30}$, $\frac{1}{150}a^{11}-\frac{1}{150}a^{9}+\frac{1}{150}a^{7}-\frac{28}{75}a^{5}+\frac{17}{50}a^{3}-\frac{1}{2}a^{2}+\frac{7}{30}a$, $\frac{1}{501750}a^{12}-\frac{7}{20070}a^{10}+\frac{109}{6690}a^{8}-\frac{83}{50175}a^{6}+\frac{9523}{33450}a^{4}-\frac{1}{2}a^{3}+\frac{59861}{501750}a^{2}+\frac{12946}{50175}$, $\frac{1}{501750}a^{13}-\frac{7}{20070}a^{11}+\frac{109}{6690}a^{9}-\frac{83}{50175}a^{7}+\frac{9523}{33450}a^{5}-\frac{1}{2}a^{4}+\frac{59861}{501750}a^{3}+\frac{12946}{50175}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$, $5$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{71}{250875}a^{12}+\frac{191}{50175}a^{10}-\frac{107}{16725}a^{8}-\frac{484}{10035}a^{6}+\frac{2896}{16725}a^{4}-\frac{1364}{250875}a^{2}+\frac{25342}{50175}$, $\frac{4}{250875}a^{13}+\frac{241}{250875}a^{12}+\frac{389}{100350}a^{11}+\frac{262}{50175}a^{10}+\frac{132}{5575}a^{9}-\frac{2903}{33450}a^{8}-\frac{15382}{50175}a^{7}+\frac{18866}{50175}a^{6}+\frac{6156}{5575}a^{5}-\frac{11446}{16725}a^{4}-\frac{655067}{501750}a^{3}+\frac{524197}{501750}a^{2}+\frac{40013}{50175}a-\frac{45283}{50175}$, $\frac{577}{501750}a^{13}+\frac{43}{250875}a^{12}+\frac{272}{50175}a^{11}+\frac{67}{20070}a^{10}-\frac{3533}{33450}a^{9}+\frac{4}{3345}a^{8}+\frac{27706}{50175}a^{7}-\frac{10931}{100350}a^{6}-\frac{43657}{33450}a^{5}+\frac{23983}{33450}a^{4}+\frac{446221}{250875}a^{3}-\frac{285952}{250875}a^{2}-\frac{89401}{100350}a+\frac{102637}{100350}$, $\frac{241}{83625}a^{13}-\frac{88}{83625}a^{12}+\frac{262}{16725}a^{11}-\frac{14}{5575}a^{10}-\frac{2903}{11150}a^{9}+\frac{654}{5575}a^{8}+\frac{18866}{16725}a^{7}-\frac{7581}{11150}a^{6}-\frac{11446}{5575}a^{5}+\frac{4912}{3345}a^{4}+\frac{220286}{83625}a^{3}-\frac{49601}{27875}a^{2}-\frac{40391}{33450}a+\frac{19331}{11150}$, $\frac{577}{501750}a^{13}-\frac{43}{250875}a^{12}+\frac{272}{50175}a^{11}-\frac{67}{20070}a^{10}-\frac{3533}{33450}a^{9}-\frac{4}{3345}a^{8}+\frac{27706}{50175}a^{7}+\frac{10931}{100350}a^{6}-\frac{43657}{33450}a^{5}-\frac{23983}{33450}a^{4}+\frac{446221}{250875}a^{3}+\frac{285952}{250875}a^{2}-\frac{89401}{100350}a-\frac{102637}{100350}$, $\frac{4}{250875}a^{13}-\frac{241}{250875}a^{12}+\frac{389}{100350}a^{11}-\frac{262}{50175}a^{10}+\frac{132}{5575}a^{9}+\frac{2903}{33450}a^{8}-\frac{15382}{50175}a^{7}-\frac{18866}{50175}a^{6}+\frac{6156}{5575}a^{5}+\frac{11446}{16725}a^{4}-\frac{655067}{501750}a^{3}-\frac{524197}{501750}a^{2}+\frac{40013}{50175}a+\frac{45283}{50175}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 12364.0517956 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 12364.0517956 \cdot 2}{2\cdot\sqrt{12545167784987734375}}\cr\approx \mathstrut & 1.34952724631 \end{aligned}\]
Galois group
A solvable group of order 14 |
The 5 conjugacy class representatives for $D_{7}$ |
Character table for $D_{7}$ |
Intermediate fields
\(\Q(\sqrt{-535}) \), 7.1.153130375.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 7 sibling: | 7.1.153130375.1 |
Minimal sibling: | 7.1.153130375.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }^{7}$ | R | ${\href{/padicField/7.7.0.1}{7} }^{2}$ | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{7}$ | ${\href{/padicField/17.7.0.1}{7} }^{2}$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{7}$ | ${\href{/padicField/37.2.0.1}{2} }^{7}$ | ${\href{/padicField/41.7.0.1}{7} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{7}$ | ${\href{/padicField/53.2.0.1}{2} }^{7}$ | ${\href{/padicField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(107\)
| 107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.535.2t1.a.a | $1$ | $ 5 \cdot 107 $ | \(\Q(\sqrt{-535}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.535.7t2.b.c | $2$ | $ 5 \cdot 107 $ | 14.0.12545167784987734375.1 | $D_{7}$ (as 14T2) | $1$ | $0$ |
*2 | 2.535.7t2.b.a | $2$ | $ 5 \cdot 107 $ | 14.0.12545167784987734375.1 | $D_{7}$ (as 14T2) | $1$ | $0$ |
*2 | 2.535.7t2.b.b | $2$ | $ 5 \cdot 107 $ | 14.0.12545167784987734375.1 | $D_{7}$ (as 14T2) | $1$ | $0$ |