Properties

Label 14.0.125...375.1
Degree $14$
Signature $[0, 7]$
Discriminant $-1.255\times 10^{19}$
Root discriminant \(23.13\)
Ramified primes $5,107$
Class number $2$
Class group [2]
Galois group $D_{7}$ (as 14T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535)
 
gp: K = bnfinit(y^14 + 6*y^12 - 85*y^10 + 355*y^8 - 695*y^6 + 1091*y^4 - 609*y^2 + 535, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535)
 

\( x^{14} + 6x^{12} - 85x^{10} + 355x^{8} - 695x^{6} + 1091x^{4} - 609x^{2} + 535 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-12545167784987734375\) \(\medspace = -\,5^{7}\cdot 107^{7}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.13\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}107^{1/2}\approx 23.130067012440755$
Ramified primes:   \(5\), \(107\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-535}) \)
$\card{ \Gal(K/\Q) }$:  $14$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15}a^{6}+\frac{7}{15}a^{4}+\frac{1}{15}a^{2}-\frac{1}{3}$, $\frac{1}{30}a^{7}+\frac{7}{30}a^{5}-\frac{1}{2}a^{4}+\frac{1}{30}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{30}a^{8}-\frac{1}{30}a^{6}-\frac{1}{2}a^{5}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{13}{30}a^{2}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{30}a^{9}-\frac{1}{30}a^{6}+\frac{2}{5}a^{5}+\frac{4}{15}a^{4}-\frac{2}{5}a^{3}+\frac{7}{15}a^{2}+\frac{1}{6}a+\frac{1}{6}$, $\frac{1}{150}a^{10}-\frac{1}{150}a^{8}+\frac{1}{150}a^{6}-\frac{28}{75}a^{4}+\frac{17}{50}a^{2}-\frac{1}{2}a+\frac{7}{30}$, $\frac{1}{150}a^{11}-\frac{1}{150}a^{9}+\frac{1}{150}a^{7}-\frac{28}{75}a^{5}+\frac{17}{50}a^{3}-\frac{1}{2}a^{2}+\frac{7}{30}a$, $\frac{1}{501750}a^{12}-\frac{7}{20070}a^{10}+\frac{109}{6690}a^{8}-\frac{83}{50175}a^{6}+\frac{9523}{33450}a^{4}-\frac{1}{2}a^{3}+\frac{59861}{501750}a^{2}+\frac{12946}{50175}$, $\frac{1}{501750}a^{13}-\frac{7}{20070}a^{11}+\frac{109}{6690}a^{9}-\frac{83}{50175}a^{7}+\frac{9523}{33450}a^{5}-\frac{1}{2}a^{4}+\frac{59861}{501750}a^{3}+\frac{12946}{50175}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$, $5$

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{71}{250875}a^{12}+\frac{191}{50175}a^{10}-\frac{107}{16725}a^{8}-\frac{484}{10035}a^{6}+\frac{2896}{16725}a^{4}-\frac{1364}{250875}a^{2}+\frac{25342}{50175}$, $\frac{4}{250875}a^{13}+\frac{241}{250875}a^{12}+\frac{389}{100350}a^{11}+\frac{262}{50175}a^{10}+\frac{132}{5575}a^{9}-\frac{2903}{33450}a^{8}-\frac{15382}{50175}a^{7}+\frac{18866}{50175}a^{6}+\frac{6156}{5575}a^{5}-\frac{11446}{16725}a^{4}-\frac{655067}{501750}a^{3}+\frac{524197}{501750}a^{2}+\frac{40013}{50175}a-\frac{45283}{50175}$, $\frac{577}{501750}a^{13}+\frac{43}{250875}a^{12}+\frac{272}{50175}a^{11}+\frac{67}{20070}a^{10}-\frac{3533}{33450}a^{9}+\frac{4}{3345}a^{8}+\frac{27706}{50175}a^{7}-\frac{10931}{100350}a^{6}-\frac{43657}{33450}a^{5}+\frac{23983}{33450}a^{4}+\frac{446221}{250875}a^{3}-\frac{285952}{250875}a^{2}-\frac{89401}{100350}a+\frac{102637}{100350}$, $\frac{241}{83625}a^{13}-\frac{88}{83625}a^{12}+\frac{262}{16725}a^{11}-\frac{14}{5575}a^{10}-\frac{2903}{11150}a^{9}+\frac{654}{5575}a^{8}+\frac{18866}{16725}a^{7}-\frac{7581}{11150}a^{6}-\frac{11446}{5575}a^{5}+\frac{4912}{3345}a^{4}+\frac{220286}{83625}a^{3}-\frac{49601}{27875}a^{2}-\frac{40391}{33450}a+\frac{19331}{11150}$, $\frac{577}{501750}a^{13}-\frac{43}{250875}a^{12}+\frac{272}{50175}a^{11}-\frac{67}{20070}a^{10}-\frac{3533}{33450}a^{9}-\frac{4}{3345}a^{8}+\frac{27706}{50175}a^{7}+\frac{10931}{100350}a^{6}-\frac{43657}{33450}a^{5}-\frac{23983}{33450}a^{4}+\frac{446221}{250875}a^{3}+\frac{285952}{250875}a^{2}-\frac{89401}{100350}a-\frac{102637}{100350}$, $\frac{4}{250875}a^{13}-\frac{241}{250875}a^{12}+\frac{389}{100350}a^{11}-\frac{262}{50175}a^{10}+\frac{132}{5575}a^{9}+\frac{2903}{33450}a^{8}-\frac{15382}{50175}a^{7}-\frac{18866}{50175}a^{6}+\frac{6156}{5575}a^{5}+\frac{11446}{16725}a^{4}-\frac{655067}{501750}a^{3}-\frac{524197}{501750}a^{2}+\frac{40013}{50175}a+\frac{45283}{50175}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12364.0517956 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 12364.0517956 \cdot 2}{2\cdot\sqrt{12545167784987734375}}\cr\approx \mathstrut & 1.34952724631 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 + 6*x^12 - 85*x^10 + 355*x^8 - 695*x^6 + 1091*x^4 - 609*x^2 + 535);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_7$ (as 14T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 14
The 5 conjugacy class representatives for $D_{7}$
Character table for $D_{7}$

Intermediate fields

\(\Q(\sqrt{-535}) \), 7.1.153130375.1 x7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 7 sibling: 7.1.153130375.1
Minimal sibling: 7.1.153130375.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{2}$ ${\href{/padicField/3.2.0.1}{2} }^{7}$ R ${\href{/padicField/7.7.0.1}{7} }^{2}$ ${\href{/padicField/11.7.0.1}{7} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{7}$ ${\href{/padicField/17.7.0.1}{7} }^{2}$ ${\href{/padicField/19.7.0.1}{7} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{7}$ ${\href{/padicField/29.7.0.1}{7} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{7}$ ${\href{/padicField/37.2.0.1}{2} }^{7}$ ${\href{/padicField/41.7.0.1}{7} }^{2}$ ${\href{/padicField/43.7.0.1}{7} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{7}$ ${\href{/padicField/53.2.0.1}{2} }^{7}$ ${\href{/padicField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
\(107\) Copy content Toggle raw display 107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.535.2t1.a.a$1$ $ 5 \cdot 107 $ \(\Q(\sqrt{-535}) \) $C_2$ (as 2T1) $1$ $-1$
*2 2.535.7t2.b.c$2$ $ 5 \cdot 107 $ 14.0.12545167784987734375.1 $D_{7}$ (as 14T2) $1$ $0$
*2 2.535.7t2.b.a$2$ $ 5 \cdot 107 $ 14.0.12545167784987734375.1 $D_{7}$ (as 14T2) $1$ $0$
*2 2.535.7t2.b.b$2$ $ 5 \cdot 107 $ 14.0.12545167784987734375.1 $D_{7}$ (as 14T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.