Normalized defining polynomial
\( x^{14} - 3 x^{13} - 2 x^{12} + 3 x^{11} + 29 x^{10} + 25 x^{9} - 69 x^{8} - 93 x^{7} + 579 x^{6} + 1357 x^{5} + 2826 x^{4} + 2263 x^{3} + 2130 x^{2} + 494 x + 361 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-122975574173606802987=-\,3^{15}\cdot 29^{4}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{621} a^{12} + \frac{58}{621} a^{11} + \frac{100}{621} a^{10} - \frac{2}{23} a^{9} + \frac{274}{621} a^{8} - \frac{163}{621} a^{7} - \frac{104}{621} a^{6} - \frac{301}{621} a^{5} - \frac{125}{621} a^{4} + \frac{71}{207} a^{3} + \frac{62}{621} a^{2} + \frac{14}{69} a - \frac{149}{621}$, $\frac{1}{327772908752155407} a^{13} - \frac{2641125889932}{12139737361190941} a^{12} - \frac{3937939794050039}{109257636250718469} a^{11} + \frac{53952380699548082}{327772908752155407} a^{10} - \frac{12326568139871411}{327772908752155407} a^{9} + \frac{12758807671648318}{327772908752155407} a^{8} + \frac{124739883681386975}{327772908752155407} a^{7} + \frac{146752316360150704}{327772908752155407} a^{6} + \frac{4695153790678118}{327772908752155407} a^{5} - \frac{50746016965933600}{327772908752155407} a^{4} - \frac{9717479479523815}{327772908752155407} a^{3} - \frac{5857784105340794}{327772908752155407} a^{2} - \frac{1048966547366471}{327772908752155407} a - \frac{1951038185743348}{17251205723797653}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{289747589}{226355158881} a^{13} - \frac{1706928434}{226355158881} a^{12} + \frac{1775566918}{226355158881} a^{11} + \frac{4265274536}{226355158881} a^{10} + \frac{1729958672}{226355158881} a^{9} - \frac{2100004744}{25150573209} a^{8} - \frac{11549512310}{75451719627} a^{7} + \frac{18238379812}{75451719627} a^{6} + \frac{9587784963}{8383524403} a^{5} - \frac{194454785878}{226355158881} a^{4} - \frac{439722206102}{226355158881} a^{3} - \frac{1055832685253}{226355158881} a^{2} - \frac{532216873942}{226355158881} a - \frac{140104683481}{226355158881} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22888.2323492 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_7\times C_2$ (as 14T47):
| A non-solvable group of order 5040 |
| The 18 conjugacy class representatives for $A_7\times C_2$ |
| Character table for $A_7\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.2134162809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $59$ | 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 59.6.4.1 | $x^{6} + 295 x^{3} + 27848$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |