Normalized defining polynomial
\( x^{14} - 6 x^{13} + 27 x^{12} - 88 x^{11} + 49 x^{10} + 30 x^{9} + 1094 x^{8} + 2216 x^{7} + 4015 x^{6} + 7470 x^{5} + 8603 x^{4} + 5072 x^{3} + 7239 x^{2} - 870 x + 2012 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-122288345645958900577483=-\,1987^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1987$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{96} a^{10} - \frac{1}{48} a^{9} - \frac{1}{32} a^{8} + \frac{1}{24} a^{7} + \frac{1}{48} a^{6} - \frac{1}{24} a^{5} + \frac{7}{32} a^{4} + \frac{1}{12} a^{3} + \frac{5}{32} a^{2} - \frac{1}{16} a - \frac{3}{8}$, $\frac{1}{192} a^{11} - \frac{1}{192} a^{10} + \frac{1}{64} a^{9} - \frac{7}{192} a^{8} + \frac{1}{32} a^{7} + \frac{7}{96} a^{6} - \frac{47}{192} a^{5} + \frac{13}{192} a^{4} - \frac{1}{192} a^{3} - \frac{79}{192} a^{2} - \frac{29}{96} a - \frac{3}{16}$, $\frac{1}{1152} a^{12} - \frac{1}{576} a^{11} - \frac{1}{288} a^{10} - \frac{5}{576} a^{9} - \frac{43}{1152} a^{8} + \frac{5}{144} a^{7} + \frac{83}{1152} a^{6} - \frac{1}{288} a^{5} - \frac{59}{576} a^{4} + \frac{17}{576} a^{3} - \frac{115}{1152} a^{2} - \frac{29}{576} a + \frac{49}{288}$, $\frac{1}{117072500128565760} a^{13} - \frac{7450141163189}{117072500128565760} a^{12} - \frac{105957020168993}{58536250064282880} a^{11} + \frac{43499070404639}{11707250012856576} a^{10} - \frac{1063368185679001}{117072500128565760} a^{9} - \frac{735356629178267}{117072500128565760} a^{8} + \frac{770845024188391}{23414500025713152} a^{7} - \frac{6595019556805669}{117072500128565760} a^{6} + \frac{5570631423456601}{58536250064282880} a^{5} - \frac{258347385663703}{3658515629017680} a^{4} - \frac{24160253532399349}{117072500128565760} a^{3} - \frac{19209246724614181}{117072500128565760} a^{2} + \frac{20859169991935181}{58536250064282880} a - \frac{751728213057}{6465236366720}$
Class group and class number
$C_{13}\times C_{13}$, which has order $169$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27094.4760334 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-1987}) \), 7.1.7845011803.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.7845011803.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1987 | Data not computed | ||||||