Normalized defining polynomial
\( x^{14} + 12 x^{12} - 60 x^{11} - 567 x^{10} + 237 x^{9} + 1873 x^{8} + 9867 x^{7} + 13383 x^{6} - 49512 x^{5} + 153774 x^{4} - 127299 x^{3} + 116395 x^{2} - 72588 x + 28167 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12111141100130785779768711=-\,3^{7}\cdot 1277^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{10} - \frac{1}{27} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{8}{27} a^{4} + \frac{1}{3} a^{3} - \frac{8}{27} a^{2} - \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{9} + \frac{1}{9} a^{7} - \frac{1}{27} a^{5} - \frac{1}{3} a^{4} + \frac{10}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{207009} a^{12} - \frac{2164}{207009} a^{11} - \frac{676}{69003} a^{10} + \frac{73}{207009} a^{9} + \frac{6605}{207009} a^{8} - \frac{79}{2091} a^{7} + \frac{22835}{207009} a^{6} + \frac{85522}{207009} a^{5} + \frac{743}{1683} a^{4} + \frac{5197}{18819} a^{3} + \frac{90136}{207009} a^{2} + \frac{3577}{7667} a + \frac{256}{1683}$, $\frac{1}{51996465005524233708059469} a^{13} + \frac{123983711832701323762}{51996465005524233708059469} a^{12} - \frac{17702033512614263899720}{3058615588560249041650557} a^{11} - \frac{479312065722950274927806}{51996465005524233708059469} a^{10} + \frac{1639755846411914540554198}{51996465005524233708059469} a^{9} - \frac{2114189310237406212057413}{51996465005524233708059469} a^{8} - \frac{441277890691221180151156}{7428066429360604815437067} a^{7} - \frac{8097505813754381077492015}{51996465005524233708059469} a^{6} - \frac{3216901460806014705667960}{51996465005524233708059469} a^{5} - \frac{2322431030577519220426813}{51996465005524233708059469} a^{4} + \frac{258172454887764187753919}{51996465005524233708059469} a^{3} + \frac{1136215942126674774419632}{3058615588560249041650557} a^{2} - \frac{2096081564402084251683928}{17332155001841411236019823} a + \frac{138405497478560515995644}{422735487849790517951703}$
Class group and class number
$C_{13}\times C_{78}$, which has order $1014$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70433.5060458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-3831}) \), 7.1.56225905191.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.56225905191.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 1277 | Data not computed | ||||||