Normalized defining polynomial
\( x^{14} - 5 x^{13} + 27 x^{12} - 79 x^{11} + 468 x^{10} - 1362 x^{9} + 7314 x^{8} - 18671 x^{7} + 80950 x^{6} - 158128 x^{5} + 561187 x^{4} - 714115 x^{3} + 2179894 x^{2} - 1446221 x + 3780979 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1204677577382769220367486327=-\,23^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(667=23\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{667}(576,·)$, $\chi_{667}(1,·)$, $\chi_{667}(139,·)$, $\chi_{667}(484,·)$, $\chi_{667}(645,·)$, $\chi_{667}(459,·)$, $\chi_{667}(45,·)$, $\chi_{667}(24,·)$, $\chi_{667}(436,·)$, $\chi_{667}(277,·)$, $\chi_{667}(344,·)$, $\chi_{667}(252,·)$, $\chi_{667}(413,·)$, $\chi_{667}(574,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{11} - \frac{3}{17} a^{10} + \frac{5}{17} a^{9} + \frac{3}{17} a^{8} + \frac{8}{17} a^{7} - \frac{4}{17} a^{6} + \frac{4}{17} a^{5} + \frac{7}{17} a^{4} + \frac{8}{17} a^{3} - \frac{5}{17} a^{2} + \frac{1}{17} a + \frac{5}{17}$, $\frac{1}{208071437219101694314384748513107} a^{13} - \frac{4392387248346367229524110885991}{208071437219101694314384748513107} a^{12} - \frac{54369695941961029858202352549935}{208071437219101694314384748513107} a^{11} + \frac{48813049183577516627679752828877}{208071437219101694314384748513107} a^{10} + \frac{101809804286664164927424979359562}{208071437219101694314384748513107} a^{9} - \frac{1064050440026151165423858626336}{12239496307005982018493220500771} a^{8} - \frac{939141213962009720103929838529}{208071437219101694314384748513107} a^{7} - \frac{80243570404166203456512577999602}{208071437219101694314384748513107} a^{6} + \frac{58177909531752849807760162097257}{208071437219101694314384748513107} a^{5} + \frac{31656923750780872553610125843879}{208071437219101694314384748513107} a^{4} + \frac{9633221974091668062277752334203}{208071437219101694314384748513107} a^{3} - \frac{40000164456397197333680885700029}{208071437219101694314384748513107} a^{2} - \frac{92582016003277223513510854616593}{208071437219101694314384748513107} a - \frac{2344005673491104096641018072831}{5074913102904919373521579232027}$
Class group and class number
$C_{2}\times C_{2}\times C_{1806}$, which has order $7224$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |