Normalized defining polynomial
\( x^{14} - 2 x^{13} + 112 x^{12} - 146 x^{11} + 6693 x^{10} - 9524 x^{9} + 276271 x^{8} - 461308 x^{7} + 7907601 x^{6} - 13385716 x^{5} + 147472662 x^{4} - 207970434 x^{3} + 1594403790 x^{2} - 1379805112 x + 7521613141 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1179170130027156611464857533497344=-\,2^{14}\cdot 3^{7}\cdot 7^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $230.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3612=2^{2}\cdot 3\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3612}(1,·)$, $\chi_{3612}(1091,·)$, $\chi_{3612}(3527,·)$, $\chi_{3612}(2185,·)$, $\chi_{3612}(1933,·)$, $\chi_{3612}(3107,·)$, $\chi_{3612}(1681,·)$, $\chi_{3612}(2099,·)$, $\chi_{3612}(2773,·)$, $\chi_{3612}(1847,·)$, $\chi_{3612}(1177,·)$, $\chi_{3612}(3193,·)$, $\chi_{3612}(1595,·)$, $\chi_{3612}(2687,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{1813} a^{12} + \frac{123}{1813} a^{11} + \frac{108}{1813} a^{10} + \frac{5}{1813} a^{9} + \frac{360}{1813} a^{8} + \frac{3}{259} a^{7} + \frac{156}{1813} a^{6} - \frac{717}{1813} a^{5} + \frac{572}{1813} a^{4} - \frac{244}{1813} a^{3} - \frac{25}{259} a^{2} + \frac{45}{259} a - \frac{3}{37}$, $\frac{1}{9980134320712919925863499495883889090977} a^{13} - \frac{1508798227560681857723122409929427948}{9980134320712919925863499495883889090977} a^{12} - \frac{668723318414241590837985250079869176172}{9980134320712919925863499495883889090977} a^{11} - \frac{165211177227060414071860306707345754547}{9980134320712919925863499495883889090977} a^{10} + \frac{1071542674899693095774191783703393547016}{9980134320712919925863499495883889090977} a^{9} + \frac{4137041546173303808189052621034588552098}{9980134320712919925863499495883889090977} a^{8} + \frac{1287482639342254722855676782643855610422}{9980134320712919925863499495883889090977} a^{7} - \frac{1476163339869170356758738504669294529223}{9980134320712919925863499495883889090977} a^{6} - \frac{2594704282916083561758996299646815093150}{9980134320712919925863499495883889090977} a^{5} - \frac{2787618771388663684080614082137199841299}{9980134320712919925863499495883889090977} a^{4} - \frac{110575033358467720471234864232877290040}{9980134320712919925863499495883889090977} a^{3} - \frac{677638577490151117864506980491693608370}{1425733474387559989409071356554841298711} a^{2} + \frac{157355125991780414379043567378927014022}{1425733474387559989409071356554841298711} a + \frac{14319120475701606436102479471194437269}{203676210626794284201295908079263042673}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{21982}$, which has order $2813696$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |