Normalized defining polynomial
\( x^{14} - x^{13} + 3 x^{12} - 11 x^{11} + 44 x^{10} + 156 x^{9} - 250 x^{8} - 749 x^{7} + 1560 x^{6} + 4490 x^{5} + 3202 x^{4} + 755 x^{3} + 4050 x^{2} + 1750 x + 625 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1165087474585497590531111=-\,71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{71}(32,·)$, $\chi_{71}(1,·)$, $\chi_{71}(34,·)$, $\chi_{71}(37,·)$, $\chi_{71}(70,·)$, $\chi_{71}(39,·)$, $\chi_{71}(41,·)$, $\chi_{71}(45,·)$, $\chi_{71}(48,·)$, $\chi_{71}(51,·)$, $\chi_{71}(20,·)$, $\chi_{71}(23,·)$, $\chi_{71}(26,·)$, $\chi_{71}(30,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{1}{25} a^{7} - \frac{1}{25} a^{6} - \frac{1}{25} a^{5} - \frac{4}{25} a^{4} + \frac{4}{25} a^{3} - \frac{4}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{625} a^{12} - \frac{1}{125} a^{11} + \frac{3}{625} a^{10} + \frac{2}{625} a^{9} + \frac{1}{625} a^{8} - \frac{38}{625} a^{7} + \frac{32}{625} a^{6} + \frac{8}{625} a^{5} - \frac{12}{625} a^{4} + \frac{28}{625} a^{3} + \frac{36}{125} a^{2} - \frac{3}{25} a - \frac{1}{5}$, $\frac{1}{4106020289175625} a^{13} + \frac{338608684971}{821204057835125} a^{12} + \frac{3135028373353}{4106020289175625} a^{11} - \frac{9490134612893}{4106020289175625} a^{10} + \frac{78031410280046}{4106020289175625} a^{9} + \frac{318104873948997}{4106020289175625} a^{8} + \frac{7310256529206}{241530605245625} a^{7} - \frac{209048708414097}{4106020289175625} a^{6} - \frac{276667560518457}{4106020289175625} a^{5} - \frac{663192587381592}{4106020289175625} a^{4} - \frac{19727965082058}{821204057835125} a^{3} - \frac{13523529657442}{164240811567025} a^{2} + \frac{1307071334437}{32848162313405} a - \frac{2428089719090}{6569632462681}$
Class group and class number
$C_{49}$, which has order $49$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.696625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.14.13.11 | $x^{14} + 9088$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |