Normalized defining polynomial
\( x^{14} + 197 x^{12} + 13790 x^{10} + 415079 x^{8} + 5284722 x^{6} + 26038278 x^{4} + 45764873 x^{2} + 18567053 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11027596817823724526645960905146368=-\,2^{14}\cdot 197^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $270.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(788=2^{2}\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{788}(1,·)$, $\chi_{788}(83,·)$, $\chi_{788}(555,·)$, $\chi_{788}(487,·)$, $\chi_{788}(233,·)$, $\chi_{788}(427,·)$, $\chi_{788}(301,·)$, $\chi_{788}(19,·)$, $\chi_{788}(203,·)$, $\chi_{788}(585,·)$, $\chi_{788}(787,·)$, $\chi_{788}(705,·)$, $\chi_{788}(769,·)$, $\chi_{788}(361,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{5}{19} a^{8} + \frac{4}{19} a^{6} - \frac{8}{19} a^{4} - \frac{2}{19} a^{2} + \frac{6}{19}$, $\frac{1}{19} a^{11} + \frac{5}{19} a^{9} + \frac{4}{19} a^{7} - \frac{8}{19} a^{5} - \frac{2}{19} a^{3} + \frac{6}{19} a$, $\frac{1}{818969980493651673131} a^{12} - \frac{6756830299676330042}{818969980493651673131} a^{10} - \frac{58091300276423903588}{818969980493651673131} a^{8} - \frac{308301926875320931055}{818969980493651673131} a^{6} - \frac{338018110015539474741}{818969980493651673131} a^{4} + \frac{332667865565215253545}{818969980493651673131} a^{2} + \frac{306449032699621177719}{818969980493651673131}$, $\frac{1}{251423784011551063651217} a^{13} - \frac{2765392554067766176378}{251423784011551063651217} a^{11} + \frac{47571478617907002349557}{251423784011551063651217} a^{9} + \frac{18140074475823779916317}{251423784011551063651217} a^{7} - \frac{105209279296386830039358}{251423784011551063651217} a^{5} + \frac{55807108123214147007208}{251423784011551063651217} a^{3} + \frac{22246223773292710736860}{251423784011551063651217} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{5470}$, which has order $43760$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-197}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $197$ | 197.14.13.1 | $x^{14} - 197$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |