Normalized defining polynomial
\( x^{14} - x^{13} + 131 x^{12} + 153 x^{11} + 5401 x^{10} + 16023 x^{9} + 100892 x^{8} + 382791 x^{7} + 1195655 x^{6} + 3751787 x^{5} + 8385937 x^{4} + 17768243 x^{3} + 27352621 x^{2} + 25865442 x + 22606297 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-107818525613017436136763734631=-\,13^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(559=13\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{559}(1,·)$, $\chi_{559}(194,·)$, $\chi_{559}(389,·)$, $\chi_{559}(391,·)$, $\chi_{559}(168,·)$, $\chi_{559}(170,·)$, $\chi_{559}(365,·)$, $\chi_{559}(558,·)$, $\chi_{559}(274,·)$, $\chi_{559}(51,·)$, $\chi_{559}(183,·)$, $\chi_{559}(376,·)$, $\chi_{559}(508,·)$, $\chi_{559}(285,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{3}{49} a^{8} - \frac{2}{49} a^{7} + \frac{1}{49} a^{6} - \frac{2}{49} a^{5} + \frac{3}{49} a^{4} - \frac{4}{49} a^{3} - \frac{2}{49} a^{2} + \frac{1}{49} a$, $\frac{1}{3871} a^{12} - \frac{19}{3871} a^{11} + \frac{163}{3871} a^{10} - \frac{209}{3871} a^{9} + \frac{108}{3871} a^{8} - \frac{30}{553} a^{7} - \frac{145}{3871} a^{6} + \frac{359}{3871} a^{5} + \frac{1506}{3871} a^{4} - \frac{1019}{3871} a^{3} + \frac{188}{553} a^{2} + \frac{1677}{3871} a - \frac{12}{79}$, $\frac{1}{6432851577632803430102529746318875433} a^{13} + \frac{244920898402918847625877556543791}{6432851577632803430102529746318875433} a^{12} - \frac{7412483944904065824059617182696892}{6432851577632803430102529746318875433} a^{11} + \frac{251916482595277964646348012719587572}{6432851577632803430102529746318875433} a^{10} - \frac{26396194382980742555269239263928651}{6432851577632803430102529746318875433} a^{9} - \frac{237597297059437077945829119558709499}{6432851577632803430102529746318875433} a^{8} - \frac{210871477845978677914573753954096651}{6432851577632803430102529746318875433} a^{7} - \frac{25417279460607840559492151683785707}{6432851577632803430102529746318875433} a^{6} - \frac{23958822568365840836248224387144356}{173860853449535227840608912062672309} a^{5} - \frac{1310543438715484679791760828198388131}{6432851577632803430102529746318875433} a^{4} + \frac{14166462910997131563600356210899619}{81428500982693714305095313244542727} a^{3} + \frac{23632328584571420216156294024886515}{131282685257812314900051627475895417} a^{2} - \frac{149805120027676883337122781728088907}{6432851577632803430102529746318875433} a - \frac{4787587142149283186336005564722}{10528726061256902309732266218293}$
Class group and class number
$C_{74384}$, which has order $74384$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-559}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.14.7.1 | $x^{14} - 43940 x^{8} + 482680900 x^{2} - 250994068$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |