Normalized defining polynomial
\( x^{14} - x^{13} + 61 x^{12} - 82 x^{11} + 908 x^{10} - 5925 x^{9} + 1220 x^{8} - 34756 x^{7} + 145654 x^{6} + 6877 x^{5} + 1495378 x^{4} + 369519 x^{3} + 4546573 x^{2} + 398747 x + 3805387 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1071195028273471735324517808411=-\,3^{7}\cdot 113^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(339=3\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{339}(256,·)$, $\chi_{339}(1,·)$, $\chi_{339}(290,·)$, $\chi_{339}(323,·)$, $\chi_{339}(230,·)$, $\chi_{339}(233,·)$, $\chi_{339}(106,·)$, $\chi_{339}(109,·)$, $\chi_{339}(16,·)$, $\chi_{339}(49,·)$, $\chi_{339}(338,·)$, $\chi_{339}(83,·)$, $\chi_{339}(311,·)$, $\chi_{339}(28,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{71} a^{12} + \frac{11}{71} a^{11} - \frac{2}{71} a^{10} + \frac{21}{71} a^{9} - \frac{12}{71} a^{8} - \frac{11}{71} a^{7} + \frac{20}{71} a^{6} + \frac{5}{71} a^{5} + \frac{27}{71} a^{4} - \frac{22}{71} a^{3} - \frac{15}{71} a^{2} + \frac{27}{71} a$, $\frac{1}{140733780170109963062488712475575041052377} a^{13} + \frac{33080847150597225095719611014361428}{666984740142701246741652665761019151907} a^{12} + \frac{64529080232104546356996025742244208978658}{140733780170109963062488712475575041052377} a^{11} - \frac{20645814583086772188115008326979335738363}{140733780170109963062488712475575041052377} a^{10} - \frac{41141998040968170330175409117171905204813}{140733780170109963062488712475575041052377} a^{9} - \frac{23845319405009794419940913442771117891242}{140733780170109963062488712475575041052377} a^{8} - \frac{60584155340997708413199195123866627558453}{140733780170109963062488712475575041052377} a^{7} - \frac{51197567114576300770863594617858574891242}{140733780170109963062488712475575041052377} a^{6} - \frac{1264205100318284855635560800513703477302}{140733780170109963062488712475575041052377} a^{5} - \frac{10225681772208885587279707287051450473387}{140733780170109963062488712475575041052377} a^{4} + \frac{68398998805901664663415840424670796530700}{140733780170109963062488712475575041052377} a^{3} + \frac{23100013310446669007765632278793338188458}{140733780170109963062488712475575041052377} a^{2} + \frac{51010176257162596438175819353744239202655}{140733780170109963062488712475575041052377} a - \frac{516118046863072955529352865010522950171}{1982165917888872719189981865853169592287}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{426}$, which has order $3408$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-339}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $113$ | 113.14.13.11 | $x^{14} + 247131$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |