Normalized defining polynomial
\( x^{14} - 5 x^{13} + 12 x^{12} + 31 x^{11} + 722 x^{10} - 4645 x^{9} + 23535 x^{8} - 41683 x^{7} + 272781 x^{6} - 1040258 x^{5} + 7172534 x^{4} - 22736110 x^{3} + 85299995 x^{2} - 143854350 x + 314845525 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1055787449474652775306737176796875=-\,5^{7}\cdot 7^{7}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $228.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2485=5\cdot 7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2485}(1,·)$, $\chi_{2485}(1539,·)$, $\chi_{2485}(1156,·)$, $\chi_{2485}(2309,·)$, $\chi_{2485}(456,·)$, $\chi_{2485}(174,·)$, $\chi_{2485}(1681,·)$, $\chi_{2485}(2451,·)$, $\chi_{2485}(1749,·)$, $\chi_{2485}(1014,·)$, $\chi_{2485}(314,·)$, $\chi_{2485}(1891,·)$, $\chi_{2485}(316,·)$, $\chi_{2485}(2344,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{85} a^{9} - \frac{6}{85} a^{8} + \frac{1}{17} a^{7} - \frac{21}{85} a^{6} + \frac{2}{85} a^{5} - \frac{8}{17} a^{4} - \frac{38}{85} a^{3} - \frac{38}{85} a^{2} - \frac{7}{17} a$, $\frac{1}{425} a^{10} + \frac{2}{425} a^{9} + \frac{8}{425} a^{8} + \frac{31}{85} a^{7} - \frac{64}{425} a^{6} - \frac{211}{425} a^{5} - \frac{41}{85} a^{4} - \frac{121}{425} a^{3} + \frac{24}{85} a^{2} + \frac{12}{85} a$, $\frac{1}{425} a^{11} - \frac{1}{425} a^{9} - \frac{1}{425} a^{8} - \frac{144}{425} a^{7} + \frac{107}{425} a^{6} + \frac{122}{425} a^{5} - \frac{21}{425} a^{4} - \frac{43}{425} a^{3} + \frac{36}{85} a^{2} + \frac{11}{85} a$, $\frac{1}{2125} a^{12} - \frac{2}{2125} a^{11} - \frac{2}{2125} a^{9} - \frac{19}{2125} a^{8} - \frac{48}{425} a^{7} + \frac{32}{125} a^{6} - \frac{231}{2125} a^{5} - \frac{176}{2125} a^{4} + \frac{84}{425} a^{3} - \frac{186}{425} a^{2} - \frac{29}{85} a - \frac{2}{5}$, $\frac{1}{761522844817933392809131555299875} a^{13} + \frac{10312417889550183460665517687}{44795461459878434871125385605875} a^{12} + \frac{437638664280578559824344008463}{761522844817933392809131555299875} a^{11} + \frac{11211443212107480765597152248}{761522844817933392809131555299875} a^{10} + \frac{4381004349620233617117395151394}{761522844817933392809131555299875} a^{9} + \frac{50335953178305728978682213319346}{761522844817933392809131555299875} a^{8} - \frac{200877138832336752240925068454746}{761522844817933392809131555299875} a^{7} + \frac{360982772720553605807141717291558}{761522844817933392809131555299875} a^{6} + \frac{215881874609959275721301005056963}{761522844817933392809131555299875} a^{5} - \frac{372517154479809456205958708934536}{761522844817933392809131555299875} a^{4} + \frac{3172978745798926429314163066878}{152304568963586678561826311059975} a^{3} + \frac{72837706525422354242116490184339}{152304568963586678561826311059975} a^{2} - \frac{10246247353303594289048764188023}{30460913792717335712365262211995} a + \frac{804982174268718753212343795478}{1791818458395137394845015424235}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{3164}$, which has order $809984$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |