Normalized defining polynomial
\( x^{14} + 42 x^{12} - 119 x^{11} + 553 x^{10} - 2702 x^{9} + 6174 x^{8} - 15735 x^{7} + 36995 x^{6} - 61572 x^{5} + 88655 x^{4} - 58940 x^{3} + 2863 x^{2} - 4557 x + 30361 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-104770985911247257875546875=-\,5^{7}\cdot 7^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(245=5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{245}(1,·)$, $\chi_{245}(34,·)$, $\chi_{245}(36,·)$, $\chi_{245}(69,·)$, $\chi_{245}(71,·)$, $\chi_{245}(104,·)$, $\chi_{245}(106,·)$, $\chi_{245}(139,·)$, $\chi_{245}(141,·)$, $\chi_{245}(174,·)$, $\chi_{245}(176,·)$, $\chi_{245}(209,·)$, $\chi_{245}(211,·)$, $\chi_{245}(244,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{79} a^{12} - \frac{19}{79} a^{11} + \frac{2}{79} a^{10} + \frac{36}{79} a^{9} + \frac{15}{79} a^{8} + \frac{36}{79} a^{7} + \frac{28}{79} a^{6} + \frac{28}{79} a^{5} + \frac{34}{79} a^{4} + \frac{24}{79} a^{3} - \frac{11}{79} a^{2} - \frac{20}{79} a - \frac{9}{79}$, $\frac{1}{38773564319412795975206859460829} a^{13} - \frac{111637784316912571557299686320}{38773564319412795975206859460829} a^{12} - \frac{4643714966374025504520652759732}{38773564319412795975206859460829} a^{11} + \frac{7621234676510962077734429201864}{38773564319412795975206859460829} a^{10} - \frac{2431455967135637793865922512699}{38773564319412795975206859460829} a^{9} - \frac{9172361265689719770421569027349}{38773564319412795975206859460829} a^{8} + \frac{11132302808433319256076261153644}{38773564319412795975206859460829} a^{7} - \frac{17279032022943626042989270832102}{38773564319412795975206859460829} a^{6} + \frac{3386938453365023177976895630882}{38773564319412795975206859460829} a^{5} + \frac{13119972141149482932433582522505}{38773564319412795975206859460829} a^{4} - \frac{4714945864507167865844109040169}{38773564319412795975206859460829} a^{3} - \frac{17401800844317668327168047002426}{38773564319412795975206859460829} a^{2} - \frac{10367868341882617507866620485840}{38773564319412795975206859460829} a - \frac{3700030579107906441080816332982}{38773564319412795975206859460829}$
Class group and class number
$C_{254}$, which has order $254$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.6897369 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7 | Data not computed | ||||||