Normalized defining polynomial
\( x^{14} - 2 x^{13} + 124 x^{12} - 214 x^{11} + 7557 x^{10} - 10668 x^{9} + 287927 x^{8} - 310308 x^{7} + 7248641 x^{6} - 5536192 x^{5} + 118383398 x^{4} - 58021334 x^{3} + 1144024522 x^{2} - 277132320 x + 4979767381 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10440732699324736115103484821504=-\,2^{14}\cdot 3^{7}\cdot 7^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $164.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2436=2^{2}\cdot 3\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2436}(1,·)$, $\chi_{2436}(1763,·)$, $\chi_{2436}(1093,·)$, $\chi_{2436}(2017,·)$, $\chi_{2436}(169,·)$, $\chi_{2436}(587,·)$, $\chi_{2436}(335,·)$, $\chi_{2436}(1009,·)$, $\chi_{2436}(83,·)$, $\chi_{2436}(755,·)$, $\chi_{2436}(1847,·)$, $\chi_{2436}(923,·)$, $\chi_{2436}(2269,·)$, $\chi_{2436}(1765,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} - \frac{8}{17} a^{10} - \frac{7}{17} a^{9} - \frac{1}{17} a^{8} + \frac{4}{17} a^{6} - \frac{6}{17} a^{5} - \frac{7}{17} a^{4} - \frac{7}{17} a^{3} - \frac{2}{17} a^{2} - \frac{1}{17} a$, $\frac{1}{17} a^{12} - \frac{3}{17} a^{10} - \frac{6}{17} a^{9} - \frac{8}{17} a^{8} + \frac{4}{17} a^{7} - \frac{8}{17} a^{6} - \frac{4}{17} a^{5} + \frac{5}{17} a^{4} - \frac{7}{17} a^{3} - \frac{8}{17} a$, $\frac{1}{168777884480148773063824545913456958361541} a^{13} + \frac{2494178770679041662003410990720177205137}{168777884480148773063824545913456958361541} a^{12} + \frac{3897371542625804791957900133428331871923}{168777884480148773063824545913456958361541} a^{11} + \frac{12315797087197090223874976108883716566659}{168777884480148773063824545913456958361541} a^{10} + \frac{10230710693900264324474856448650518246109}{168777884480148773063824545913456958361541} a^{9} + \frac{25776052232723199412737230698456885680485}{168777884480148773063824545913456958361541} a^{8} + \frac{4140670742064972067574502030859039288915}{9928110851773457239048502700791585785973} a^{7} + \frac{67630390875780366605812910256145782397715}{168777884480148773063824545913456958361541} a^{6} + \frac{46157587552193420844914505414963564839257}{168777884480148773063824545913456958361541} a^{5} - \frac{5870558189628209561500976244807776007081}{168777884480148773063824545913456958361541} a^{4} - \frac{35287851466925110738236285402278625944930}{168777884480148773063824545913456958361541} a^{3} - \frac{22000269587954699180469204620749521526196}{168777884480148773063824545913456958361541} a^{2} + \frac{2186810434196174455346846786303965832173}{9928110851773457239048502700791585785973} a - \frac{63320148276543767377270281730216019823}{9928110851773457239048502700791585785973}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{68966}$, which has order $1103456$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |