Normalized defining polynomial
\( x^{14} - x^{13} + 10 x^{12} - 19 x^{11} + 22 x^{10} - 46 x^{9} + 23 x^{8} + 223 x^{7} - 394 x^{6} - 152 x^{5} + 734 x^{4} - 191 x^{3} - 473 x^{2} + 185 x + 169 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-104052649942678734027=-\,3^{19}\cdot 547^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{93047389823980187} a^{13} - \frac{33942761296374586}{93047389823980187} a^{12} + \frac{32213313696589759}{93047389823980187} a^{11} - \frac{37969123434106820}{93047389823980187} a^{10} - \frac{1996197675394141}{93047389823980187} a^{9} - \frac{36474780937126345}{93047389823980187} a^{8} + \frac{42070990073649010}{93047389823980187} a^{7} + \frac{20176195598284019}{93047389823980187} a^{6} - \frac{7782138712167113}{93047389823980187} a^{5} + \frac{30666035768733132}{93047389823980187} a^{4} + \frac{5983732518634316}{93047389823980187} a^{3} + \frac{6370352879027720}{93047389823980187} a^{2} - \frac{39983039464132224}{93047389823980187} a - \frac{8539810503820304}{93047389823980187}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{870432031}{77272065779} a^{13} - \frac{1268974872}{77272065779} a^{12} + \frac{9176108091}{77272065779} a^{11} - \frac{21441193099}{77272065779} a^{10} + \frac{27490593384}{77272065779} a^{9} - \frac{59261715996}{77272065779} a^{8} + \frac{48536021240}{77272065779} a^{7} + \frac{164093826959}{77272065779} a^{6} - \frac{389886449088}{77272065779} a^{5} + \frac{34544061775}{77272065779} a^{4} + \frac{525770854031}{77272065779} a^{3} - \frac{340335303933}{77272065779} a^{2} - \frac{123765750524}{77272065779} a + \frac{177549653888}{77272065779} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18139.3317602 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_7\times C_2$ (as 14T47):
| A non-solvable group of order 5040 |
| The 18 conjugacy class representatives for $A_7\times C_2$ |
| Character table for $A_7\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.1963110249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.12.18.64 | $x^{12} + 12 x^{10} - 12 x^{9} - 9 x^{8} - 9 x^{7} - 9 x^{6} - 9 x^{5} - 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $18$ | 12T40 | $[2, 2]_{2}^{4}$ | |
| 547 | Data not computed | ||||||