Normalized defining polynomial
\( x^{14} - x^{13} + 10 x^{12} - 19 x^{11} + 22 x^{10} - 46 x^{9} + 23 x^{8} + 223 x^{7} - 394 x^{6} + \cdots + 169 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-104052649942678734027\)
\(\medspace = -\,3^{19}\cdot 547^{4}\)
|
| |
| Root discriminant: | \(26.90\) |
| |
| Galois root discriminant: | $3^{11/6}547^{2/3}\approx 501.24168878521635$ | ||
| Ramified primes: |
\(3\), \(547\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{64}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{93\cdots 87}a^{13}-\frac{33\cdots 86}{93\cdots 87}a^{12}+\frac{32\cdots 59}{93\cdots 87}a^{11}-\frac{37\cdots 20}{93\cdots 87}a^{10}-\frac{19\cdots 41}{93\cdots 87}a^{9}-\frac{36\cdots 45}{93\cdots 87}a^{8}+\frac{42\cdots 10}{93\cdots 87}a^{7}+\frac{20\cdots 19}{93\cdots 87}a^{6}-\frac{77\cdots 13}{93\cdots 87}a^{5}+\frac{30\cdots 32}{93\cdots 87}a^{4}+\frac{59\cdots 16}{93\cdots 87}a^{3}+\frac{63\cdots 20}{93\cdots 87}a^{2}-\frac{39\cdots 24}{93\cdots 87}a-\frac{85\cdots 04}{93\cdots 87}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
| |
| Relative class number: | $4$ |
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( \frac{870432031}{77272065779} a^{13} - \frac{1268974872}{77272065779} a^{12} + \frac{9176108091}{77272065779} a^{11} - \frac{21441193099}{77272065779} a^{10} + \frac{27490593384}{77272065779} a^{9} - \frac{59261715996}{77272065779} a^{8} + \frac{48536021240}{77272065779} a^{7} + \frac{164093826959}{77272065779} a^{6} - \frac{389886449088}{77272065779} a^{5} + \frac{34544061775}{77272065779} a^{4} + \frac{525770854031}{77272065779} a^{3} - \frac{340335303933}{77272065779} a^{2} - \frac{123765750524}{77272065779} a + \frac{177549653888}{77272065779} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{10\cdots 32}{93\cdots 87}a^{13}+\frac{178837329511485}{93\cdots 87}a^{12}+\frac{11\cdots 82}{93\cdots 87}a^{11}-\frac{68\cdots 05}{93\cdots 87}a^{10}+\frac{25\cdots 49}{93\cdots 87}a^{9}-\frac{35\cdots 31}{93\cdots 87}a^{8}+\frac{97\cdots 39}{93\cdots 87}a^{7}+\frac{17\cdots 46}{93\cdots 87}a^{6}-\frac{15\cdots 78}{93\cdots 87}a^{5}-\frac{19\cdots 74}{93\cdots 87}a^{4}+\frac{28\cdots 33}{93\cdots 87}a^{3}+\frac{44\cdots 27}{93\cdots 87}a^{2}-\frac{15\cdots 65}{93\cdots 87}a-\frac{34\cdots 06}{93\cdots 87}$, $\frac{676593162687722}{93\cdots 87}a^{13}-\frac{12\cdots 91}{93\cdots 87}a^{12}+\frac{67\cdots 16}{93\cdots 87}a^{11}-\frac{19\cdots 52}{93\cdots 87}a^{10}+\frac{19\cdots 44}{93\cdots 87}a^{9}-\frac{48\cdots 61}{93\cdots 87}a^{8}+\frac{41\cdots 02}{93\cdots 87}a^{7}+\frac{12\cdots 81}{93\cdots 87}a^{6}-\frac{36\cdots 43}{93\cdots 87}a^{5}-\frac{56\cdots 34}{93\cdots 87}a^{4}+\frac{54\cdots 46}{93\cdots 87}a^{3}-\frac{21\cdots 76}{93\cdots 87}a^{2}-\frac{24\cdots 79}{93\cdots 87}a+\frac{41\cdots 84}{93\cdots 87}$, $\frac{15\cdots 46}{93\cdots 87}a^{13}-\frac{15\cdots 52}{93\cdots 87}a^{12}+\frac{14\cdots 84}{93\cdots 87}a^{11}-\frac{31\cdots 38}{93\cdots 87}a^{10}+\frac{24\cdots 35}{93\cdots 87}a^{9}-\frac{79\cdots 80}{93\cdots 87}a^{8}+\frac{37\cdots 81}{93\cdots 87}a^{7}+\frac{36\cdots 23}{93\cdots 87}a^{6}-\frac{53\cdots 30}{93\cdots 87}a^{5}-\frac{35\cdots 13}{93\cdots 87}a^{4}+\frac{97\cdots 02}{93\cdots 87}a^{3}+\frac{99\cdots 17}{93\cdots 87}a^{2}-\frac{50\cdots 19}{93\cdots 87}a-\frac{16\cdots 35}{93\cdots 87}$, $\frac{602625997943263}{93\cdots 87}a^{13}-\frac{972935692432281}{93\cdots 87}a^{12}+\frac{60\cdots 07}{93\cdots 87}a^{11}-\frac{16\cdots 14}{93\cdots 87}a^{10}+\frac{15\cdots 38}{93\cdots 87}a^{9}-\frac{42\cdots 76}{93\cdots 87}a^{8}+\frac{22\cdots 60}{93\cdots 87}a^{7}+\frac{12\cdots 38}{93\cdots 87}a^{6}-\frac{31\cdots 26}{93\cdots 87}a^{5}+\frac{47\cdots 49}{93\cdots 87}a^{4}+\frac{35\cdots 74}{93\cdots 87}a^{3}-\frac{21\cdots 72}{93\cdots 87}a^{2}-\frac{14\cdots 33}{93\cdots 87}a+\frac{31\cdots 76}{93\cdots 87}$, $\frac{723222165407791}{93\cdots 87}a^{13}-\frac{12\cdots 78}{93\cdots 87}a^{12}+\frac{79\cdots 31}{93\cdots 87}a^{11}-\frac{19\cdots 04}{93\cdots 87}a^{10}+\frac{27\cdots 75}{93\cdots 87}a^{9}-\frac{45\cdots 55}{93\cdots 87}a^{8}+\frac{36\cdots 36}{93\cdots 87}a^{7}+\frac{17\cdots 43}{93\cdots 87}a^{6}-\frac{47\cdots 26}{93\cdots 87}a^{5}+\frac{27\cdots 97}{93\cdots 87}a^{4}+\frac{34\cdots 32}{93\cdots 87}a^{3}-\frac{40\cdots 97}{93\cdots 87}a^{2}-\frac{26\cdots 28}{93\cdots 87}a+\frac{13\cdots 82}{93\cdots 87}$, $\frac{576614519474769}{93\cdots 87}a^{13}-\frac{849769415629303}{93\cdots 87}a^{12}+\frac{67\cdots 49}{93\cdots 87}a^{11}-\frac{12\cdots 23}{93\cdots 87}a^{10}+\frac{24\cdots 12}{93\cdots 87}a^{9}-\frac{32\cdots 41}{93\cdots 87}a^{8}+\frac{22\cdots 32}{93\cdots 87}a^{7}+\frac{10\cdots 78}{93\cdots 87}a^{6}-\frac{35\cdots 99}{93\cdots 87}a^{5}+\frac{18\cdots 49}{93\cdots 87}a^{4}+\frac{47\cdots 58}{93\cdots 87}a^{3}-\frac{53\cdots 63}{93\cdots 87}a^{2}-\frac{84\cdots 37}{93\cdots 87}a+\frac{26\cdots 17}{93\cdots 87}$
|
| |
| Regulator: | \( 18139.3317602 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 18139.3317602 \cdot 4}{6\cdot\sqrt{104052649942678734027}}\cr\approx \mathstrut & 0.458313374355 \end{aligned}\]
Galois group
$C_2\times A_7$ (as 14T47):
| A non-solvable group of order 5040 |
| The 18 conjugacy class representatives for $A_7\times C_2$ |
| Character table for $A_7\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.1963110249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.6.18a5.5 | $x^{12} + 18 x^{11} + 138 x^{10} + 643 x^{9} + 2064 x^{8} + 4848 x^{7} + 8576 x^{6} + 11544 x^{5} + 11760 x^{4} + 8864 x^{3} + 4704 x^{2} + 1584 x + 259$ | $6$ | $2$ | $18$ | 12T40 | $$[2, 2]_{2}^{4}$$ | |
|
\(547\)
| $\Q_{547}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{547}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $3$ | $3$ | $1$ | $2$ |