Properties

Label 14.0.103...848.4
Degree $14$
Signature $[0, 7]$
Discriminant $-1.033\times 10^{22}$
Root discriminant \(37.36\)
Ramified primes $2,3,7$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $F_7$ (as 14T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117)
 
gp: K = bnfinit(y^14 + 7*y^12 + 105*y^10 - 168*y^9 + 455*y^8 - 480*y^7 + 539*y^6 - 252*y^5 + 441*y^4 - 504*y^3 + 1939*y^2 - 2100*y + 1117, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117)
 

\( x^{14} + 7 x^{12} + 105 x^{10} - 168 x^{9} + 455 x^{8} - 480 x^{7} + 539 x^{6} - 252 x^{5} + 441 x^{4} + \cdots + 1117 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-10334408033917410766848\) \(\medspace = -\,2^{12}\cdot 3^{12}\cdot 7^{15}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}3^{6/7}7^{47/42}\approx 40.99130413528715$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{52\!\cdots\!60}a^{13}+\frac{10\!\cdots\!84}{13\!\cdots\!15}a^{12}+\frac{24\!\cdots\!99}{26\!\cdots\!30}a^{11}+\frac{28\!\cdots\!99}{26\!\cdots\!30}a^{10}+\frac{14\!\cdots\!59}{26\!\cdots\!30}a^{9}-\frac{18\!\cdots\!61}{10\!\cdots\!32}a^{8}+\frac{10\!\cdots\!39}{26\!\cdots\!83}a^{7}+\frac{57\!\cdots\!47}{26\!\cdots\!83}a^{6}-\frac{20\!\cdots\!71}{52\!\cdots\!60}a^{5}+\frac{84\!\cdots\!31}{26\!\cdots\!30}a^{4}-\frac{90\!\cdots\!81}{26\!\cdots\!30}a^{3}-\frac{64\!\cdots\!74}{13\!\cdots\!15}a^{2}-\frac{54\!\cdots\!48}{13\!\cdots\!15}a+\frac{20\!\cdots\!93}{52\!\cdots\!60}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{23\!\cdots\!51}{52\!\cdots\!60}a^{13}+\frac{76\!\cdots\!41}{52\!\cdots\!60}a^{12}+\frac{15\!\cdots\!93}{52\!\cdots\!60}a^{11}+\frac{30\!\cdots\!89}{26\!\cdots\!30}a^{10}+\frac{11\!\cdots\!29}{26\!\cdots\!30}a^{9}-\frac{61\!\cdots\!33}{10\!\cdots\!32}a^{8}+\frac{81\!\cdots\!33}{52\!\cdots\!66}a^{7}-\frac{26\!\cdots\!91}{26\!\cdots\!83}a^{6}+\frac{42\!\cdots\!99}{52\!\cdots\!60}a^{5}+\frac{19\!\cdots\!17}{52\!\cdots\!60}a^{4}+\frac{56\!\cdots\!63}{52\!\cdots\!60}a^{3}-\frac{32\!\cdots\!99}{13\!\cdots\!15}a^{2}+\frac{23\!\cdots\!59}{26\!\cdots\!30}a-\frac{36\!\cdots\!47}{52\!\cdots\!60}$, $\frac{12\!\cdots\!11}{52\!\cdots\!60}a^{13}+\frac{42\!\cdots\!31}{52\!\cdots\!60}a^{12}+\frac{91\!\cdots\!73}{52\!\cdots\!60}a^{11}+\frac{14\!\cdots\!19}{26\!\cdots\!30}a^{10}+\frac{68\!\cdots\!79}{26\!\cdots\!30}a^{9}-\frac{34\!\cdots\!29}{10\!\cdots\!32}a^{8}+\frac{53\!\cdots\!65}{52\!\cdots\!66}a^{7}-\frac{23\!\cdots\!26}{26\!\cdots\!83}a^{6}+\frac{61\!\cdots\!99}{52\!\cdots\!60}a^{5}-\frac{34\!\cdots\!53}{52\!\cdots\!60}a^{4}+\frac{72\!\cdots\!63}{52\!\cdots\!60}a^{3}-\frac{98\!\cdots\!19}{13\!\cdots\!15}a^{2}+\frac{64\!\cdots\!09}{26\!\cdots\!30}a-\frac{45\!\cdots\!47}{52\!\cdots\!60}$, $\frac{43\!\cdots\!67}{52\!\cdots\!60}a^{13}-\frac{27\!\cdots\!79}{26\!\cdots\!30}a^{12}+\frac{25\!\cdots\!11}{52\!\cdots\!60}a^{11}-\frac{58\!\cdots\!69}{52\!\cdots\!60}a^{10}+\frac{99\!\cdots\!99}{13\!\cdots\!15}a^{9}-\frac{22\!\cdots\!87}{10\!\cdots\!32}a^{8}+\frac{21\!\cdots\!15}{52\!\cdots\!66}a^{7}-\frac{17\!\cdots\!25}{26\!\cdots\!83}a^{6}-\frac{55\!\cdots\!47}{52\!\cdots\!60}a^{5}+\frac{79\!\cdots\!97}{26\!\cdots\!30}a^{4}-\frac{28\!\cdots\!29}{52\!\cdots\!60}a^{3}+\frac{34\!\cdots\!73}{52\!\cdots\!60}a^{2}-\frac{60\!\cdots\!81}{13\!\cdots\!15}a+\frac{81\!\cdots\!71}{52\!\cdots\!60}$, $\frac{12\!\cdots\!67}{52\!\cdots\!60}a^{13}+\frac{58\!\cdots\!51}{26\!\cdots\!30}a^{12}+\frac{82\!\cdots\!71}{52\!\cdots\!60}a^{11}+\frac{98\!\cdots\!11}{52\!\cdots\!60}a^{10}+\frac{30\!\cdots\!64}{13\!\cdots\!15}a^{9}-\frac{14\!\cdots\!79}{10\!\cdots\!32}a^{8}+\frac{30\!\cdots\!81}{52\!\cdots\!66}a^{7}+\frac{83\!\cdots\!91}{26\!\cdots\!83}a^{6}-\frac{79\!\cdots\!67}{52\!\cdots\!60}a^{5}+\frac{10\!\cdots\!77}{26\!\cdots\!30}a^{4}-\frac{26\!\cdots\!09}{52\!\cdots\!60}a^{3}+\frac{32\!\cdots\!13}{52\!\cdots\!60}a^{2}-\frac{23\!\cdots\!71}{13\!\cdots\!15}a-\frac{25\!\cdots\!09}{52\!\cdots\!60}$, $\frac{19\!\cdots\!35}{10\!\cdots\!32}a^{13}-\frac{74\!\cdots\!89}{10\!\cdots\!32}a^{12}+\frac{14\!\cdots\!67}{10\!\cdots\!32}a^{11}-\frac{29\!\cdots\!91}{52\!\cdots\!66}a^{10}+\frac{52\!\cdots\!14}{26\!\cdots\!83}a^{9}-\frac{11\!\cdots\!61}{10\!\cdots\!32}a^{8}+\frac{11\!\cdots\!01}{52\!\cdots\!66}a^{7}-\frac{12\!\cdots\!02}{26\!\cdots\!83}a^{6}+\frac{64\!\cdots\!63}{10\!\cdots\!32}a^{5}-\frac{76\!\cdots\!97}{10\!\cdots\!32}a^{4}+\frac{51\!\cdots\!97}{10\!\cdots\!32}a^{3}-\frac{72\!\cdots\!72}{26\!\cdots\!83}a^{2}-\frac{34\!\cdots\!96}{26\!\cdots\!83}a-\frac{25\!\cdots\!59}{10\!\cdots\!32}$, $\frac{30\!\cdots\!65}{10\!\cdots\!32}a^{13}-\frac{30\!\cdots\!17}{10\!\cdots\!32}a^{12}+\frac{25\!\cdots\!69}{10\!\cdots\!32}a^{11}-\frac{10\!\cdots\!99}{52\!\cdots\!66}a^{10}+\frac{86\!\cdots\!85}{26\!\cdots\!83}a^{9}-\frac{82\!\cdots\!59}{10\!\cdots\!32}a^{8}+\frac{11\!\cdots\!95}{52\!\cdots\!66}a^{7}-\frac{88\!\cdots\!25}{26\!\cdots\!83}a^{6}+\frac{49\!\cdots\!37}{10\!\cdots\!32}a^{5}-\frac{32\!\cdots\!57}{10\!\cdots\!32}a^{4}+\frac{35\!\cdots\!63}{10\!\cdots\!32}a^{3}+\frac{13\!\cdots\!76}{26\!\cdots\!83}a^{2}-\frac{16\!\cdots\!19}{26\!\cdots\!83}a+\frac{40\!\cdots\!31}{10\!\cdots\!32}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 586605.1191605367 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 586605.1191605367 \cdot 1}{2\cdot\sqrt{10334408033917410766848}}\cr\approx \mathstrut & 1.11540382401034 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 + 7*x^12 + 105*x^10 - 168*x^9 + 455*x^8 - 480*x^7 + 539*x^6 - 252*x^5 + 441*x^4 - 504*x^3 + 1939*x^2 - 2100*x + 1117);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 14T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\sqrt{-7}) \), 7.1.38423222208.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 7 sibling: 7.1.38423222208.4
Degree 21 sibling: deg 21
Minimal sibling: 7.1.38423222208.4

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ R ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{7}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.7.0.1}{7} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{7}$ ${\href{/padicField/43.7.0.1}{7} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.3.0.1}{3} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
\(3\) Copy content Toggle raw display 3.14.12.1$x^{14} + 14 x^{13} + 98 x^{12} + 448 x^{11} + 1484 x^{10} + 3752 x^{9} + 7448 x^{8} + 11782 x^{7} + 14938 x^{6} + 15008 x^{5} + 11452 x^{4} + 6328 x^{3} + 2632 x^{2} + 896 x + 185$$7$$2$$12$$F_7$$[\ ]_{7}^{6}$
\(7\) Copy content Toggle raw display 7.14.15.5$x^{14} + 7 x^{3} + 7 x^{2} + 7$$14$$1$$15$$F_7$$[7/6]_{6}$