Normalized defining polynomial
\( x^{14} - 28 x^{11} + 280 x^{10} + 567 x^{9} + 5061 x^{8} + 2273 x^{7} - 735 x^{6} + 33908 x^{5} + 40348 x^{4} - 3192 x^{3} + 36855 x^{2} + 119196 x + 75141 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10201866453631127927668100931=-\,3^{8}\cdot 7^{20}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{5}{11} a^{8} - \frac{3}{11} a^{7} - \frac{3}{11} a^{6} + \frac{1}{11} a^{5} + \frac{5}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{8} + \frac{4}{11} a^{7} - \frac{3}{11} a^{6} - \frac{1}{11} a^{5} + \frac{4}{11} a^{4} + \frac{5}{11} a^{3} + \frac{1}{11} a^{2} + \frac{5}{11} a$, $\frac{1}{55} a^{11} + \frac{2}{55} a^{9} - \frac{14}{55} a^{8} - \frac{16}{55} a^{7} - \frac{3}{55} a^{6} + \frac{23}{55} a^{5} + \frac{23}{55} a^{4} + \frac{9}{55} a^{3} + \frac{16}{55} a^{2} + \frac{8}{55} a + \frac{1}{5}$, $\frac{1}{3795} a^{12} + \frac{3}{1265} a^{11} - \frac{41}{1265} a^{10} + \frac{134}{3795} a^{9} + \frac{13}{3795} a^{8} - \frac{144}{1265} a^{7} - \frac{263}{1265} a^{6} + \frac{31}{759} a^{5} + \frac{397}{1265} a^{4} - \frac{1828}{3795} a^{3} + \frac{1732}{3795} a^{2} + \frac{211}{1265} a + \frac{1}{5}$, $\frac{1}{25563663039009255360297075} a^{13} + \frac{690038396426603644399}{8521221013003085120099025} a^{12} + \frac{2633948333157298611156}{2840407004334361706699675} a^{11} - \frac{144960599962001562679676}{5112732607801851072059415} a^{10} + \frac{30575672584274409509642}{5112732607801851072059415} a^{9} - \frac{1914047582751283093689941}{8521221013003085120099025} a^{8} - \frac{545585950097481979744447}{1704244202600617024019805} a^{7} + \frac{6972466934880564448363718}{25563663039009255360297075} a^{6} - \frac{40952881661009194292937}{123495956710189639421725} a^{5} - \frac{58956443314146169231012}{1022546521560370214411883} a^{4} - \frac{8957304669309061292922917}{25563663039009255360297075} a^{3} - \frac{2034934862227000365744052}{8521221013003085120099025} a^{2} + \frac{569250131159582880285802}{2840407004334361706699675} a + \frac{463518376362646569296}{11226905155471785401975}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2528603759.06 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 20 conjugacy class representatives for 1/2[1/2.F_42(7)^2]2 |
| Character table for 1/2[1/2.F_42(7)^2]2 |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |