Normalized defining polynomial
\( x^{13} - 4 x^{11} - 3 x^{10} + 9 x^{9} + 10 x^{8} - 4 x^{7} - 12 x^{6} - 13 x^{5} + 5 x^{4} + 12 x^{3} - x + 1 \)
Invariants
Degree: | $13$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-96082590998375\)\(\medspace = -\,5^{3}\cdot 768660727987\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $11.90$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 768660727987$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{535} a^{12} + \frac{52}{535} a^{11} + \frac{5}{107} a^{10} + \frac{227}{535} a^{9} + \frac{43}{535} a^{8} + \frac{106}{535} a^{7} + \frac{158}{535} a^{6} + \frac{179}{535} a^{5} + \frac{40}{107} a^{4} + \frac{48}{107} a^{3} + \frac{187}{535} a^{2} + \frac{94}{535} a + \frac{72}{535}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 61.9626233533 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{13}$ (as 13T9):
A non-solvable group of order 6227020800 |
The 101 conjugacy class representatives for $S_{13}$ are not computed |
Character table for $S_{13}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 26 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
768660727987 | Data not computed |