Normalized defining polynomial
\( x^{13} - 4 x^{12} + 6 x^{11} - 6 x^{10} + 7 x^{9} - 5 x^{8} - x^{7} + x^{6} + 5 x^{5} - 2 x^{4} - 3 x^{3} - x^{2} + 1 \)
Invariants
Degree: | $13$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-7805208559959\)\(\medspace = -\,3^{3}\cdot 31\cdot 71\cdot 821\cdot 159977\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $9.81$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 31, 71, 821, 159977$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{137} a^{12} - \frac{32}{137} a^{11} - \frac{57}{137} a^{10} - \frac{54}{137} a^{9} + \frac{12}{137} a^{8} - \frac{67}{137} a^{7} - \frac{43}{137} a^{6} - \frac{28}{137} a^{5} - \frac{33}{137} a^{4} - \frac{37}{137} a^{3} - \frac{63}{137} a^{2} - \frac{18}{137} a - \frac{44}{137}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 11.7783503996 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{13}$ (as 13T9):
A non-solvable group of order 6227020800 |
The 101 conjugacy class representatives for $S_{13}$ are not computed |
Character table for $S_{13}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 26 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.7.0.1 | $x^{7} + x^{2} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
$31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.10.0.1 | $x^{10} - x + 11$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
$71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
821 | Data not computed | ||||||
159977 | Data not computed |