Properties

Label 13.3.34372007159104.1
Degree $13$
Signature $[3, 5]$
Discriminant $-3.437\times 10^{13}$
Root discriminant \(11.00\)
Ramified primes $2,29,239,77487031$
Class number $1$
Class group trivial
Galois group $S_{13}$ (as 13T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1)
 
gp: K = bnfinit(y^13 - y^12 - 2*y^11 + 5*y^10 + y^9 - 8*y^8 + 5*y^7 + 7*y^6 - 2*y^4 - 4*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1)
 

\( x^{13} - x^{12} - 2x^{11} + 5x^{10} + x^{9} - 8x^{8} + 5x^{7} + 7x^{6} - 2x^{4} - 4x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $13$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-34372007159104\) \(\medspace = -\,2^{6}\cdot 29\cdot 239\cdot 77487031\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 29^{1/2}239^{1/2}77487031^{1/2}\approx 1465691.1159736216$
Ramified primes:   \(2\), \(29\), \(239\), \(77487031\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-537062611861}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{59}a^{11}+\frac{27}{59}a^{10}+\frac{27}{59}a^{9}+\frac{12}{59}a^{8}+\frac{1}{59}a^{7}+\frac{28}{59}a^{6}+\frac{3}{59}a^{5}-\frac{28}{59}a^{4}-\frac{15}{59}a^{3}-\frac{8}{59}a^{2}+\frac{2}{59}a-\frac{28}{59}$, $\frac{1}{3481}a^{12}+\frac{13}{3481}a^{11}+\frac{180}{3481}a^{10}-\frac{956}{3481}a^{9}+\frac{541}{3481}a^{8}+\frac{604}{3481}a^{7}+\frac{1499}{3481}a^{6}+\frac{107}{3481}a^{5}+\frac{1498}{3481}a^{4}+\frac{84}{3481}a^{3}+\frac{1176}{3481}a^{2}-\frac{941}{3481}a+\frac{746}{3481}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{35}{59}a^{12}-\frac{51}{59}a^{11}-\frac{46}{59}a^{10}+\frac{196}{59}a^{9}-\frac{58}{59}a^{8}-\frac{252}{59}a^{7}+\frac{301}{59}a^{6}+\frac{103}{59}a^{5}-\frac{72}{59}a^{4}-\frac{31}{59}a^{3}+\frac{14}{59}a^{2}-\frac{22}{59}a-\frac{137}{59}$, $\frac{1730}{3481}a^{12}-\frac{2054}{3481}a^{11}-\frac{3188}{3481}a^{10}+\frac{8740}{3481}a^{9}+\frac{898}{3481}a^{8}-\frac{13481}{3481}a^{7}+\frac{8893}{3481}a^{6}+\frac{10529}{3481}a^{5}-\frac{330}{3481}a^{4}-\frac{5189}{3481}a^{3}-\frac{489}{3481}a^{2}-\frac{2657}{3481}a-\frac{6358}{3481}$, $\frac{893}{3481}a^{12}-\frac{604}{3481}a^{11}-\frac{1923}{3481}a^{10}+\frac{3562}{3481}a^{9}+\frac{2381}{3481}a^{8}-\frac{5434}{3481}a^{7}+\frac{1077}{3481}a^{6}+\frac{6697}{3481}a^{5}+\frac{5317}{3481}a^{4}-\frac{2868}{3481}a^{3}-\frac{858}{3481}a^{2}+\frac{2030}{3481}a-\frac{4829}{3481}$, $\frac{23}{3481}a^{12}+\frac{358}{3481}a^{11}-\frac{1229}{3481}a^{10}+\frac{491}{3481}a^{9}+\frac{2708}{3481}a^{8}-\frac{3454}{3481}a^{7}-\frac{2162}{3481}a^{6}+\frac{6119}{3481}a^{5}-\frac{2008}{3481}a^{4}-\frac{2434}{3481}a^{3}-\frac{1272}{3481}a^{2}+\frac{2842}{3481}a-\frac{1899}{3481}$, $\frac{636}{3481}a^{12}-\frac{51}{3481}a^{11}-\frac{2222}{3481}a^{10}+\frac{2811}{3481}a^{9}+\frac{4059}{3481}a^{8}-\frac{7085}{3481}a^{7}-\frac{135}{3481}a^{6}+\frac{11766}{3481}a^{5}-\frac{1361}{3481}a^{4}-\frac{2803}{3481}a^{3}+\frac{3415}{3481}a^{2}+\frac{1023}{3481}a-\frac{2736}{3481}$, $a$, $\frac{19}{59}a^{12}-\frac{27}{59}a^{11}-\frac{25}{59}a^{10}+\frac{103}{59}a^{9}-\frac{30}{59}a^{8}-\frac{126}{59}a^{7}+\frac{159}{59}a^{6}+\frac{31}{59}a^{5}-\frac{33}{59}a^{4}+\frac{42}{59}a^{3}-\frac{8}{59}a^{2}-\frac{78}{59}a-\frac{43}{59}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 29.7815563037 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{5}\cdot 29.7815563037 \cdot 1}{2\cdot\sqrt{34372007159104}}\cr\approx \mathstrut & 0.198977639928 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - x^12 - 2*x^11 + 5*x^10 + x^9 - 8*x^8 + 5*x^7 + 7*x^6 - 2*x^4 - 4*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{13}$ (as 13T9):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 6227020800
The 101 conjugacy class representatives for $S_{13}$ are not computed
Character table for $S_{13}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 26 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.9.0.1}{9} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.13.0.1}{13} }$ ${\href{/padicField/17.13.0.1}{13} }$ ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ R ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.5.0.1}{5} }$ ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.5$x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$$2$$3$$6$$C_6$$[2]^{3}$
2.7.0.1$x^{7} + x + 1$$1$$7$$0$$C_7$$[\ ]^{7}$
\(29\) Copy content Toggle raw display 29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.3.0.1$x^{3} + 2 x + 27$$1$$3$$0$$C_3$$[\ ]^{3}$
29.8.0.1$x^{8} + 3 x^{4} + 24 x^{3} + 26 x^{2} + 23 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
\(239\) Copy content Toggle raw display $\Q_{239}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{239}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
\(77487031\) Copy content Toggle raw display $\Q_{77487031}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$