Normalized defining polynomial
\( x^{13} - x^{12} - 312 x^{11} + 765 x^{10} + 31073 x^{9} - 114643 x^{8} - 1071164 x^{7} + 4472586 x^{6} + 13888428 x^{5} - 61633266 x^{4} - 43862553 x^{3} + 238916059 x^{2} - 140970591 x - 1052321 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9269664678331989431355838883693521=677^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $410.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $677$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(677\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{677}(1,·)$, $\chi_{677}(263,·)$, $\chi_{677}(40,·)$, $\chi_{677}(457,·)$, $\chi_{677}(362,·)$, $\chi_{677}(333,·)$, $\chi_{677}(365,·)$, $\chi_{677}(115,·)$, $\chi_{677}(533,·)$, $\chi_{677}(246,·)$, $\chi_{677}(538,·)$, $\chi_{677}(426,·)$, $\chi_{677}(383,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{251} a^{11} - \frac{120}{251} a^{10} - \frac{104}{251} a^{9} + \frac{1}{251} a^{8} - \frac{12}{251} a^{7} - \frac{30}{251} a^{6} + \frac{101}{251} a^{5} + \frac{24}{251} a^{4} - \frac{109}{251} a^{3} + \frac{72}{251} a^{2} - \frac{99}{251} a + \frac{39}{251}$, $\frac{1}{247991603590071823323312008680790511125929} a^{12} - \frac{173841080938944349711428293033003149984}{247991603590071823323312008680790511125929} a^{11} - \frac{244037454696820741331980859250437301416}{247991603590071823323312008680790511125929} a^{10} + \frac{4836768563075012632581195297654652874744}{247991603590071823323312008680790511125929} a^{9} - \frac{2110954914885104158062441012147337476653}{247991603590071823323312008680790511125929} a^{8} - \frac{42320734222505387798445750702518953638722}{247991603590071823323312008680790511125929} a^{7} - \frac{82542071030247337364090651235791583823022}{247991603590071823323312008680790511125929} a^{6} - \frac{123132428440511594133830528635691380864511}{247991603590071823323312008680790511125929} a^{5} - \frac{90481097186908731358539796652060698663923}{247991603590071823323312008680790511125929} a^{4} - \frac{101356725092329349913138192730394852488826}{247991603590071823323312008680790511125929} a^{3} - \frac{82074285220565530803700852812698843769960}{247991603590071823323312008680790511125929} a^{2} + \frac{23860956993005583662825549883550703823636}{247991603590071823323312008680790511125929} a + \frac{11388584444425828158165716368050814706566}{247991603590071823323312008680790511125929}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3454123871256.3633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 677 | Data not computed | ||||||