Normalized defining polynomial
\( x^{13} - 130 x^{11} - 390 x^{10} + 3900 x^{9} + 21255 x^{8} + 10985 x^{7} - 119145 x^{6} - 213785 x^{5} + 106470 x^{4} + 499395 x^{3} + 197730 x^{2} - 296595 x - 205335 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9109989259587930139892578125=3^{6}\cdot 5^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $141.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{78} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{78} a^{8} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{936} a^{9} - \frac{1}{312} a^{8} - \frac{1}{312} a^{7} - \frac{1}{24} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2} a^{2} - \frac{7}{24} a - \frac{1}{8}$, $\frac{1}{936} a^{10} + \frac{1}{24} a^{6} - \frac{1}{4} a^{5} - \frac{11}{36} a^{4} - \frac{1}{2} a^{3} + \frac{1}{24} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{936} a^{11} + \frac{1}{312} a^{7} - \frac{1}{12} a^{6} + \frac{7}{36} a^{5} - \frac{1}{3} a^{4} - \frac{11}{24} a^{3} + \frac{1}{6} a^{2} + \frac{1}{8} a$, $\frac{1}{262292472} a^{12} - \frac{359}{21857706} a^{11} + \frac{613}{2522043} a^{10} - \frac{399}{4857268} a^{9} - \frac{163841}{87430824} a^{8} - \frac{14425}{21857706} a^{7} - \frac{96199}{5044086} a^{6} - \frac{221081}{1681362} a^{5} - \frac{4274669}{20176344} a^{4} - \frac{401792}{840681} a^{3} - \frac{885593}{6725448} a^{2} - \frac{23951}{373636} a + \frac{10245}{373636}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 254843353531 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{13}.C_2$ (as 13T4):
| A solvable group of order 52 |
| The 7 conjugacy class representatives for $C_{13}:C_4$ |
| Character table for $C_{13}:C_4$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.13.12.1 | $x^{13} - 5$ | $13$ | $1$ | $12$ | $C_{13}:C_4$ | $[\ ]_{13}^{4}$ |
| $13$ | 13.13.15.2 | $x^{13} + 117 x^{3} + 13$ | $13$ | $1$ | $15$ | $C_{13}:C_4$ | $[5/4]_{4}$ |