Normalized defining polynomial
\( x^{13} - x^{12} - 144 x^{11} + 161 x^{10} + 6530 x^{9} - 9620 x^{8} - 109398 x^{7} + 196143 x^{6} + 512628 x^{5} - 917970 x^{4} - 650724 x^{3} + 1134730 x^{2} + 253950 x - 409375 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(884162417215006648162206715681=313^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(313\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{313}(1,·)$, $\chi_{313}(294,·)$, $\chi_{313}(103,·)$, $\chi_{313}(234,·)$, $\chi_{313}(44,·)$, $\chi_{313}(48,·)$, $\chi_{313}(113,·)$, $\chi_{313}(277,·)$, $\chi_{313}(150,·)$, $\chi_{313}(280,·)$, $\chi_{313}(249,·)$, $\chi_{313}(58,·)$, $\chi_{313}(27,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{2}{25} a^{4} - \frac{4}{25} a^{3} + \frac{1}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{6} - \frac{1}{25} a^{4} + \frac{2}{5} a^{3} - \frac{1}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{6} + \frac{2}{25} a^{5} - \frac{2}{25} a^{4} - \frac{7}{25} a^{3} - \frac{1}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{3625} a^{10} - \frac{7}{725} a^{9} - \frac{16}{3625} a^{8} - \frac{67}{3625} a^{7} - \frac{19}{725} a^{6} + \frac{341}{3625} a^{5} + \frac{172}{3625} a^{4} - \frac{38}{125} a^{3} + \frac{8}{29} a^{2} - \frac{59}{145} a + \frac{6}{29}$, $\frac{1}{2628125} a^{11} - \frac{217}{2628125} a^{10} - \frac{49036}{2628125} a^{9} + \frac{1819}{105125} a^{8} + \frac{15434}{2628125} a^{7} + \frac{166111}{2628125} a^{6} - \frac{4233}{105125} a^{5} + \frac{198289}{2628125} a^{4} + \frac{958754}{2628125} a^{3} + \frac{194174}{525625} a^{2} + \frac{48497}{105125} a + \frac{70}{841}$, $\frac{1}{94867598624609375} a^{12} - \frac{9218116429}{94867598624609375} a^{11} + \frac{6077567184843}{94867598624609375} a^{10} - \frac{217130475748143}{94867598624609375} a^{9} + \frac{1079543007441609}{94867598624609375} a^{8} - \frac{406086214662272}{94867598624609375} a^{7} - \frac{5611714837050607}{94867598624609375} a^{6} - \frac{4276434169717686}{94867598624609375} a^{5} + \frac{500807941726986}{94867598624609375} a^{4} - \frac{22397077178286478}{94867598624609375} a^{3} - \frac{95637243330903}{18973519724921875} a^{2} + \frac{1605571579111786}{3794703944984375} a - \frac{781608495677}{30357631559875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 927977436616.0109 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 313 | Data not computed | ||||||