Normalized defining polynomial
\( x^{13} - x^{12} - 252 x^{11} + 1123 x^{10} + 15626 x^{9} - 107844 x^{8} - 204415 x^{7} + 3094114 x^{6} - 4853400 x^{5} - 22393129 x^{4} + 91453411 x^{3} - 116380476 x^{2} + 47088126 x - 1165671 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(717542973516054083971838830896241=547^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $336.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(547\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{547}(1,·)$, $\chi_{547}(261,·)$, $\chi_{547}(519,·)$, $\chi_{547}(237,·)$, $\chi_{547}(46,·)$, $\chi_{547}(353,·)$, $\chi_{547}(375,·)$, $\chi_{547}(440,·)$, $\chi_{547}(293,·)$, $\chi_{547}(475,·)$, $\chi_{547}(509,·)$, $\chi_{547}(350,·)$, $\chi_{547}(517,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{117} a^{8} - \frac{2}{39} a^{6} + \frac{2}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} + \frac{41}{117} a^{2} - \frac{3}{13} a$, $\frac{1}{1053} a^{9} + \frac{11}{351} a^{7} + \frac{2}{117} a^{6} - \frac{32}{351} a^{5} - \frac{1}{117} a^{4} + \frac{80}{1053} a^{3} - \frac{55}{117} a^{2} + \frac{4}{9} a$, $\frac{1}{1053} a^{10} - \frac{1}{351} a^{8} + \frac{2}{117} a^{7} + \frac{1}{351} a^{6} + \frac{5}{117} a^{5} - \frac{7}{81} a^{4} - \frac{19}{117} a^{3} - \frac{8}{117} a^{2} + \frac{10}{39} a$, $\frac{1}{5051241} a^{11} - \frac{482}{1683747} a^{10} - \frac{1522}{5051241} a^{9} + \frac{55}{14391} a^{8} + \frac{16658}{1683747} a^{7} - \frac{53}{3321} a^{6} - \frac{294574}{5051241} a^{5} - \frac{159502}{1683747} a^{4} - \frac{821315}{5051241} a^{3} + \frac{68591}{561249} a^{2} - \frac{131335}{561249} a + \frac{5}{13}$, $\frac{1}{4549726744169906169} a^{12} + \frac{320927103838}{4549726744169906169} a^{11} - \frac{1717871911281493}{4549726744169906169} a^{10} - \frac{1087067231024560}{4549726744169906169} a^{9} - \frac{1513681934193424}{1516575581389968723} a^{8} - \frac{73128131352297823}{1516575581389968723} a^{7} - \frac{31841120184163141}{4549726744169906169} a^{6} - \frac{457276327436161849}{4549726744169906169} a^{5} - \frac{12208873978818125}{349978980320762013} a^{4} - \frac{679028580994186922}{4549726744169906169} a^{3} - \frac{12488085479727290}{505525193796656241} a^{2} + \frac{141606424664831462}{505525193796656241} a + \frac{391174973420}{3903096795039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 468882596177901.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 547 | Data not computed | ||||||