Normalized defining polynomial
\( x^{13} - x^{12} - 36 x^{11} + 77 x^{10} + 365 x^{9} - 1193 x^{8} - 617 x^{7} + 5541 x^{6} - 4414 x^{5} - 4575 x^{4} + 6321 x^{3} + 411 x^{2} - 2196 x + 293 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59091511031674153381441=79^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{79}(64,·)$, $\chi_{79}(1,·)$, $\chi_{79}(67,·)$, $\chi_{79}(38,·)$, $\chi_{79}(65,·)$, $\chi_{79}(8,·)$, $\chi_{79}(10,·)$, $\chi_{79}(46,·)$, $\chi_{79}(18,·)$, $\chi_{79}(52,·)$, $\chi_{79}(21,·)$, $\chi_{79}(22,·)$, $\chi_{79}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23} a^{10} - \frac{11}{23} a^{9} - \frac{10}{23} a^{8} + \frac{8}{23} a^{7} - \frac{8}{23} a^{6} - \frac{9}{23} a^{5} + \frac{3}{23} a^{4} - \frac{8}{23} a^{3} + \frac{7}{23} a^{2} - \frac{7}{23} a + \frac{11}{23}$, $\frac{1}{23} a^{11} + \frac{7}{23} a^{9} - \frac{10}{23} a^{8} + \frac{11}{23} a^{7} - \frac{5}{23} a^{6} - \frac{4}{23} a^{5} + \frac{2}{23} a^{4} + \frac{11}{23} a^{3} + \frac{1}{23} a^{2} + \frac{3}{23} a + \frac{6}{23}$, $\frac{1}{1253201} a^{12} + \frac{16227}{1253201} a^{11} - \frac{3951}{1253201} a^{10} - \frac{40039}{1253201} a^{9} + \frac{222896}{1253201} a^{8} + \frac{417009}{1253201} a^{7} - \frac{554348}{1253201} a^{6} + \frac{285793}{1253201} a^{5} + \frac{183385}{1253201} a^{4} - \frac{221709}{1253201} a^{3} - \frac{546617}{1253201} a^{2} - \frac{616022}{1253201} a - \frac{404244}{1253201}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14045368.3938 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $79$ | 79.13.12.1 | $x^{13} - 79$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |