Normalized defining polynomial
\( x^{13} - x^{12} - 204 x^{11} - 181 x^{10} + 10752 x^{9} + 9116 x^{8} - 208418 x^{7} - 161679 x^{6} + 1686466 x^{5} + 1207646 x^{4} - 4904338 x^{3} - 3051848 x^{2} + 896956 x + 144209 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57127433662862356193722241010001=443^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $277.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $443$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(443\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{443}(1,·)$, $\chi_{443}(35,·)$, $\chi_{443}(356,·)$, $\chi_{443}(38,·)$, $\chi_{443}(238,·)$, $\chi_{443}(115,·)$, $\chi_{443}(56,·)$, $\chi_{443}(339,·)$, $\chi_{443}(184,·)$, $\chi_{443}(378,·)$, $\chi_{443}(347,·)$, $\chi_{443}(188,·)$, $\chi_{443}(383,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{13} a^{9} + \frac{1}{13} a^{8} + \frac{1}{13} a^{6} - \frac{5}{13} a^{5} - \frac{1}{13} a^{4} + \frac{6}{13} a^{3} + \frac{2}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{13} a^{10} - \frac{1}{13} a^{8} + \frac{1}{13} a^{7} - \frac{6}{13} a^{6} + \frac{4}{13} a^{5} - \frac{6}{13} a^{4} - \frac{4}{13} a^{3} + \frac{6}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{13} a^{11} + \frac{2}{13} a^{8} - \frac{6}{13} a^{7} + \frac{5}{13} a^{6} + \frac{2}{13} a^{5} - \frac{5}{13} a^{4} - \frac{1}{13} a^{3} - \frac{6}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{432722201776761950983227367994717} a^{12} + \frac{6132693084373423328017707127835}{432722201776761950983227367994717} a^{11} + \frac{8458462850465764937788002340981}{432722201776761950983227367994717} a^{10} - \frac{493414414981056712922091778245}{33286323213597073152555951384209} a^{9} - \frac{65935521193329922084561157670291}{432722201776761950983227367994717} a^{8} - \frac{16297117949662467759009940308987}{432722201776761950983227367994717} a^{7} + \frac{20666775024114935539912340017631}{432722201776761950983227367994717} a^{6} + \frac{59482574856588687674043583015858}{432722201776761950983227367994717} a^{5} + \frac{139038000495827761297681830144415}{432722201776761950983227367994717} a^{4} + \frac{67702185105869952054654645782006}{432722201776761950983227367994717} a^{3} - \frac{1517923257468752235281606723322}{5927701394202218506619552986229} a^{2} - \frac{53958423060799896815628012672323}{432722201776761950983227367994717} a - \frac{11704460423143117442598855999542}{33286323213597073152555951384209}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 983737918371.0616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{13}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 443 | Data not computed | ||||||