Normalized defining polynomial
\( x^{13} - 78 x^{11} - 65 x^{10} + 2080 x^{9} + 2457 x^{8} - 24128 x^{7} - 27027 x^{6} + 137683 x^{5} + 110214 x^{4} - 376064 x^{3} - 128206 x^{2} + 363883 x - 12167 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(542800770374370512771595361=13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(169=13^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{169}(1,·)$, $\chi_{169}(66,·)$, $\chi_{169}(131,·)$, $\chi_{169}(40,·)$, $\chi_{169}(105,·)$, $\chi_{169}(14,·)$, $\chi_{169}(79,·)$, $\chi_{169}(144,·)$, $\chi_{169}(53,·)$, $\chi_{169}(118,·)$, $\chi_{169}(27,·)$, $\chi_{169}(92,·)$, $\chi_{169}(157,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{23} a^{9} + \frac{10}{23} a^{8} - \frac{1}{23} a^{7} + \frac{6}{23} a^{6} + \frac{6}{23} a^{5} - \frac{2}{23} a^{4} + \frac{5}{23} a^{3} + \frac{5}{23} a^{2} + \frac{8}{23} a$, $\frac{1}{437} a^{10} - \frac{1}{437} a^{9} + \frac{50}{437} a^{8} + \frac{109}{437} a^{7} + \frac{9}{437} a^{6} + \frac{116}{437} a^{5} - \frac{42}{437} a^{4} - \frac{50}{437} a^{3} - \frac{70}{437} a^{2} - \frac{203}{437} a + \frac{6}{19}$, $\frac{1}{437} a^{11} - \frac{8}{437} a^{9} + \frac{26}{437} a^{8} + \frac{175}{437} a^{7} - \frac{217}{437} a^{6} + \frac{169}{437} a^{5} + \frac{22}{437} a^{4} + \frac{32}{437} a^{3} - \frac{121}{437} a^{2} - \frac{84}{437} a + \frac{6}{19}$, $\frac{1}{423161433854797657} a^{12} + \frac{304941979446326}{423161433854797657} a^{11} + \frac{130257164717920}{423161433854797657} a^{10} - \frac{6998038476714584}{423161433854797657} a^{9} + \frac{30498274535732460}{423161433854797657} a^{8} + \frac{2036350708613748}{22271654413410403} a^{7} - \frac{142556340917656304}{423161433854797657} a^{6} + \frac{51542855244125771}{423161433854797657} a^{5} + \frac{3019358022124234}{22271654413410403} a^{4} - \frac{5885617833605573}{22271654413410403} a^{3} - \frac{144979391882990390}{423161433854797657} a^{2} - \frac{2981980706926316}{18398323211078159} a - \frac{328928563213444}{799927096133833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2733056590.62 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.13.24.1 | $x^{13} - 13 x^{12} + 13$ | $13$ | $1$ | $24$ | $C_{13}$ | $[2]$ |