Normalized defining polynomial
\( x^{13} - x^{12} - 24 x^{11} + 19 x^{10} + 190 x^{9} - 116 x^{8} - 601 x^{7} + 246 x^{6} + 738 x^{5} - 215 x^{4} - 291 x^{3} + 68 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(491258904256726154641=53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{53}(1,·)$, $\chi_{53}(36,·)$, $\chi_{53}(10,·)$, $\chi_{53}(44,·)$, $\chi_{53}(13,·)$, $\chi_{53}(46,·)$, $\chi_{53}(15,·)$, $\chi_{53}(16,·)$, $\chi_{53}(49,·)$, $\chi_{53}(24,·)$, $\chi_{53}(47,·)$, $\chi_{53}(28,·)$, $\chi_{53}(42,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23} a^{11} - \frac{3}{23} a^{10} - \frac{6}{23} a^{9} - \frac{5}{23} a^{8} - \frac{10}{23} a^{7} + \frac{5}{23} a^{6} + \frac{5}{23} a^{5} - \frac{3}{23} a^{4} - \frac{1}{23} a^{3} + \frac{4}{23} a^{2} + \frac{11}{23} a + \frac{2}{23}$, $\frac{1}{435105007} a^{12} - \frac{6511450}{435105007} a^{11} - \frac{211168269}{435105007} a^{10} - \frac{202582962}{435105007} a^{9} - \frac{11741}{435105007} a^{8} + \frac{23782233}{435105007} a^{7} - \frac{11983132}{435105007} a^{6} + \frac{20632332}{435105007} a^{5} - \frac{26107826}{435105007} a^{4} + \frac{165061215}{435105007} a^{3} - \frac{53912393}{435105007} a^{2} + \frac{83591149}{435105007} a + \frac{80272926}{435105007}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1314145.36669 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | R | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |