Normalized defining polynomial
\( x^{13} - x^{12} - 432 x^{11} + 1203 x^{10} + 46006 x^{9} - 37046 x^{8} - 2039413 x^{7} - 3276218 x^{6} + 27799988 x^{5} + 87214801 x^{4} - 38878963 x^{3} - 420910202 x^{2} - 520002704 x - 190078187 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(458010137458255714802917980980035681=937^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $553.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $937$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(937\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{937}(512,·)$, $\chi_{937}(1,·)$, $\chi_{937}(227,·)$, $\chi_{937}(36,·)$, $\chi_{937}(743,·)$, $\chi_{937}(359,·)$, $\chi_{937}(911,·)$, $\chi_{937}(657,·)$, $\chi_{937}(931,·)$, $\chi_{937}(629,·)$, $\chi_{937}(676,·)$, $\chi_{937}(721,·)$, $\chi_{937}(156,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} + \frac{5}{13} a^{7} + \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{4}{13} a^{3} + \frac{1}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{13} a^{9} + \frac{6}{13} a^{7} - \frac{2}{13} a^{5} - \frac{6}{13} a^{3} + \frac{1}{13} a$, $\frac{1}{13} a^{10} - \frac{4}{13} a^{7} - \frac{6}{13} a^{6} + \frac{6}{13} a^{5} - \frac{3}{13} a^{4} + \frac{2}{13} a^{3} - \frac{5}{13} a^{2} - \frac{4}{13} a$, $\frac{1}{13} a^{11} + \frac{1}{13} a^{7} + \frac{6}{13} a^{5} - \frac{2}{13} a^{3} - \frac{6}{13} a$, $\frac{1}{891029064251339138293469075369393406023} a^{12} + \frac{25997500921253074733374179507804347058}{891029064251339138293469075369393406023} a^{11} + \frac{16239845924160948835310363935386889786}{891029064251339138293469075369393406023} a^{10} + \frac{1309927085208737250460133215652118434}{38740394097884310360585611972582322001} a^{9} - \frac{3629600035017329823260285700981242998}{891029064251339138293469075369393406023} a^{8} - \frac{1916567507354831040257380595961447057}{13298941257482673705872672766707364269} a^{7} + \frac{3257361921381006560016330368471974421}{13298941257482673705872672766707364269} a^{6} - \frac{95555447167992325250066220014543450743}{891029064251339138293469075369393406023} a^{5} - \frac{22291742392583831975351108290281930340}{891029064251339138293469075369393406023} a^{4} - \frac{89593371559550982460780777093637670926}{891029064251339138293469075369393406023} a^{3} - \frac{369244200074925091280716345369977237096}{891029064251339138293469075369393406023} a^{2} + \frac{19675026752412437119380474408094210284}{68540697250103010637959159643799492771} a - \frac{8868616155529606128375103205365864}{37721902724327468705536136292679963}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169264238822310.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 937 | Data not computed | ||||||