Normalized defining polynomial
\( x^{13} - x^{12} - 240 x^{11} - 293 x^{10} + 19153 x^{9} + 45777 x^{8} - 616830 x^{7} - 1795569 x^{6} + 7791196 x^{5} + 23224049 x^{4} - 29107980 x^{3} - 68466088 x^{2} + 31673025 x + 4516075 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(399993265701109317068886081212641=521^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $322.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $521$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(521\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{521}(320,·)$, $\chi_{521}(1,·)$, $\chi_{521}(226,·)$, $\chi_{521}(324,·)$, $\chi_{521}(101,·)$, $\chi_{521}(422,·)$, $\chi_{521}(423,·)$, $\chi_{521}(302,·)$, $\chi_{521}(18,·)$, $\chi_{521}(255,·)$, $\chi_{521}(284,·)$, $\chi_{521}(29,·)$, $\chi_{521}(421,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{5875} a^{11} + \frac{76}{5875} a^{10} + \frac{114}{1175} a^{9} - \frac{4}{1175} a^{8} + \frac{98}{5875} a^{7} + \frac{238}{5875} a^{6} + \frac{26}{1175} a^{5} - \frac{446}{1175} a^{4} + \frac{976}{5875} a^{3} - \frac{964}{5875} a^{2} + \frac{1}{5} a + \frac{74}{235}$, $\frac{1}{873548021880746171101344791108125} a^{12} - \frac{55380244948630784680174182687}{873548021880746171101344791108125} a^{11} - \frac{12774055582612104100222033432823}{873548021880746171101344791108125} a^{10} - \frac{10926666358122469029522798056976}{174709604376149234220268958221625} a^{9} - \frac{70287731689703960438633762035092}{873548021880746171101344791108125} a^{8} + \frac{14038894249173767394123795935939}{873548021880746171101344791108125} a^{7} + \frac{37892205047085753178633124904496}{873548021880746171101344791108125} a^{6} - \frac{11454955821605589186679459978494}{174709604376149234220268958221625} a^{5} + \frac{436383839300475998577714012970166}{873548021880746171101344791108125} a^{4} - \frac{64053142726787280973430812878002}{873548021880746171101344791108125} a^{3} - \frac{419545594701004932787718691384973}{873548021880746171101344791108125} a^{2} - \frac{10032303823140760961779677334292}{34941920875229846844053791644325} a + \frac{228608814748413414337784686696}{812602811051856903350088177775}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15429359577074.87 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 521 | Data not computed | ||||||