Normalized defining polynomial
\( x^{13} - 222 x^{11} - 64 x^{10} + 18444 x^{9} + 14832 x^{8} - 723404 x^{7} - 1021200 x^{6} + 13437870 x^{5} + 27216624 x^{4} - 96770628 x^{3} - 257555808 x^{2} + 34006548 x + 256489920 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(362838554526023011241407675367424=2^{36}\cdot 3^{16}\cdot 13^{6}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $319.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{6}$, $\frac{1}{18} a^{10} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{54} a^{11} + \frac{1}{54} a^{10} - \frac{1}{18} a^{9} - \frac{1}{27} a^{8} + \frac{2}{27} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{5} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{867294893420992318975665118314084} a^{12} - \frac{2573665132922248773406859342777}{433647446710496159487832559157042} a^{11} + \frac{2316605094173640022738588692617}{433647446710496159487832559157042} a^{10} - \frac{7238522563530625266435025808624}{216823723355248079743916279578521} a^{9} + \frac{9742447069377023793609784220129}{216823723355248079743916279578521} a^{8} - \frac{14826611454586998733035218391350}{216823723355248079743916279578521} a^{7} - \frac{33522631018396226203376281624177}{72274574451749359914638759859507} a^{6} - \frac{2929795202375110659741469230997}{10324939207392765702091251408501} a^{5} - \frac{12654268957130522702157546838291}{48183049634499573276425839906338} a^{4} - \frac{18044323115413740675241044390476}{72274574451749359914638759859507} a^{3} + \frac{10843342680829441447147928507891}{72274574451749359914638759859507} a^{2} + \frac{26228690212332090607111275493342}{72274574451749359914638759859507} a - \frac{9752570052966867667552193091556}{24091524817249786638212919953169}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95129277252200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(3,3)$ (as 13T7):
| A non-solvable group of order 5616 |
| The 12 conjugacy class representatives for $\PSL(3,3)$ |
| Character table for $\PSL(3,3)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 siblings: | data not computed |
| Degree 39 siblings: | data not computed |
| Arithmetically equvalently sibling: | 13.13.362838554526023011241407675367424.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.27.4 | $x^{8} + 4 x^{6} + 14 x^{4} + 16 x^{3} + 18$ | $8$ | $1$ | $27$ | $QD_{16}$ | $[2, 3, 7/2, 9/2]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.9.15 | $x^{6} + 6 x^{4} + 6 x^{3} + 12$ | $6$ | $1$ | $9$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.8.4.2 | $x^{8} - 357911 x^{2} + 279528491$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |