Normalized defining polynomial
\( x^{13} - x^{12} - 420 x^{11} + 4253 x^{10} + 2721 x^{9} - 193733 x^{8} + 735262 x^{7} + 31458 x^{6} - 3569396 x^{5} + 1482536 x^{4} + 4833237 x^{3} + 1733969 x^{2} - 40719 x - 57869 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(326753707264991140811478515720435521=911^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $539.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $911$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(911\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{911}(128,·)$, $\chi_{911}(1,·)$, $\chi_{911}(196,·)$, $\chi_{911}(581,·)$, $\chi_{911}(897,·)$, $\chi_{911}(65,·)$, $\chi_{911}(491,·)$, $\chi_{911}(414,·)$, $\chi_{911}(577,·)$, $\chi_{911}(121,·)$, $\chi_{911}(900,·)$, $\chi_{911}(154,·)$, $\chi_{911}(30,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{133} a^{9} - \frac{1}{19} a^{8} + \frac{5}{133} a^{7} - \frac{5}{19} a^{5} - \frac{7}{19} a^{4} - \frac{15}{133} a^{3} + \frac{6}{19} a^{2} + \frac{44}{133} a + \frac{2}{19}$, $\frac{1}{133} a^{10} - \frac{6}{133} a^{8} - \frac{3}{133} a^{7} + \frac{3}{133} a^{6} + \frac{29}{133} a^{5} + \frac{60}{133} a^{4} + \frac{32}{133} a^{3} - \frac{23}{133} a^{2} - \frac{58}{133} a - \frac{5}{19}$, $\frac{1}{184471} a^{11} - \frac{62}{26353} a^{10} + \frac{253}{184471} a^{9} - \frac{10631}{184471} a^{8} - \frac{12391}{184471} a^{7} - \frac{127}{9709} a^{6} - \frac{44182}{184471} a^{5} - \frac{51904}{184471} a^{4} - \frac{13065}{184471} a^{3} + \frac{59999}{184471} a^{2} + \frac{5466}{26353} a + \frac{2441}{26353}$, $\frac{1}{3587736488104423580954189} a^{12} - \frac{9056712455923260132}{3587736488104423580954189} a^{11} - \frac{76717390438333704877}{188828236216022293734431} a^{10} - \frac{5911496384615498838466}{3587736488104423580954189} a^{9} + \frac{186708149157043488269977}{3587736488104423580954189} a^{8} - \frac{185437075879006022726693}{3587736488104423580954189} a^{7} - \frac{19313923114232422605400}{3587736488104423580954189} a^{6} + \frac{1572532224705314179691257}{3587736488104423580954189} a^{5} + \frac{1312688499392061731281648}{3587736488104423580954189} a^{4} + \frac{788882040843221895958057}{3587736488104423580954189} a^{3} - \frac{1079696915952071278487589}{3587736488104423580954189} a^{2} - \frac{3681738228157691025593}{10459873143161584784123} a + \frac{6069142723659558906730}{73219112002131093488861}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 345319680754792.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 911 | Data not computed | ||||||