Normalized defining polynomial
\( x^{13} - 2 x^{12} - 306 x^{11} + 737 x^{10} + 35420 x^{9} - 94473 x^{8} - 1919784 x^{7} + 5276958 x^{6} + 48766779 x^{5} - 126847180 x^{4} - 502327474 x^{3} + 1061716068 x^{2} + 1350962689 x - 1362894158 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30876721812776703244552125405887603759765625=3^{28}\cdot 5^{18}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2214.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{4} - \frac{1}{25} a^{3} + \frac{12}{25} a^{2} + \frac{1}{25} a + \frac{12}{25}$, $\frac{1}{125} a^{5} + \frac{11}{125} a^{3} - \frac{62}{125} a^{2} - \frac{62}{125} a + \frac{12}{125}$, $\frac{1}{625} a^{6} + \frac{1}{625} a^{5} + \frac{11}{625} a^{4} - \frac{51}{625} a^{3} + \frac{1}{625} a^{2} - \frac{12}{25} a + \frac{262}{625}$, $\frac{1}{3125} a^{7} + \frac{2}{3125} a^{6} + \frac{12}{3125} a^{5} - \frac{8}{625} a^{4} - \frac{2}{125} a^{3} - \frac{924}{3125} a^{2} + \frac{587}{3125} a + \frac{1512}{3125}$, $\frac{1}{15625} a^{8} - \frac{2}{15625} a^{7} + \frac{4}{15625} a^{6} + \frac{37}{15625} a^{5} + \frac{22}{3125} a^{4} + \frac{651}{15625} a^{3} + \frac{5908}{15625} a^{2} - \frac{2336}{15625} a - \frac{7673}{15625}$, $\frac{1}{78125} a^{9} - \frac{1}{78125} a^{8} + \frac{2}{78125} a^{7} + \frac{41}{78125} a^{6} + \frac{147}{78125} a^{5} + \frac{761}{78125} a^{4} + \frac{6559}{78125} a^{3} + \frac{3572}{78125} a^{2} + \frac{5616}{78125} a + \frac{7952}{78125}$, $\frac{1}{1171875} a^{10} - \frac{1}{234375} a^{9} + \frac{2}{390625} a^{8} + \frac{11}{390625} a^{7} - \frac{214}{390625} a^{6} + \frac{891}{390625} a^{5} - \frac{224}{78125} a^{4} - \frac{11513}{390625} a^{3} + \frac{140651}{390625} a^{2} - \frac{333262}{1171875} a + \frac{388817}{1171875}$, $\frac{1}{5859375} a^{11} + \frac{1}{5859375} a^{10} - \frac{8}{1953125} a^{9} + \frac{23}{1953125} a^{8} - \frac{148}{1953125} a^{7} - \frac{393}{1953125} a^{6} + \frac{4226}{1953125} a^{5} - \frac{18233}{1953125} a^{4} + \frac{71573}{1953125} a^{3} - \frac{1317169}{5859375} a^{2} - \frac{322151}{1171875} a - \frac{3616}{1953125}$, $\frac{1}{146484375} a^{12} + \frac{4}{48828125} a^{11} - \frac{13}{146484375} a^{10} - \frac{38}{9765625} a^{9} + \frac{171}{9765625} a^{8} + \frac{5854}{48828125} a^{7} - \frac{15222}{48828125} a^{6} - \frac{41997}{48828125} a^{5} - \frac{96698}{9765625} a^{4} - \frac{1801352}{29296875} a^{3} - \frac{12064288}{48828125} a^{2} - \frac{60674528}{146484375} a + \frac{18595599}{48828125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4344433704670000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{13}$ (as 13T8):
| A non-solvable group of order 3113510400 |
| The 55 conjugacy class representatives for $A_{13}$ are not computed |
| Character table for $A_{13}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.9.23.38 | $x^{9} + 9 x^{8} + 6 x^{6} + 3$ | $9$ | $1$ | $23$ | $(C_3^2:C_3):C_2$ | $[2, 5/2, 17/6, 19/6]_{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.10.18.23 | $x^{10} - 20 x^{9} + 105$ | $10$ | $1$ | $18$ | $(C_5^2 : C_8):C_2$ | $[17/8, 17/8]_{8}^{2}$ | |
| $29$ | 29.13.12.1 | $x^{13} - 29$ | $13$ | $1$ | $12$ | $C_{13}:C_3$ | $[\ ]_{13}^{3}$ |