Normalized defining polynomial
\( x^{13} - 65 x^{11} + 1625 x^{9} - 19500 x^{7} + 113750 x^{5} - 284375 x^{3} + 203125 x - 69500 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(302875106592253000000000000=2^{12}\cdot 5^{12}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{145} a^{7} + \frac{11}{145} a^{6} - \frac{6}{145} a^{5} - \frac{8}{29} a^{4} + \frac{12}{29} a^{3} + \frac{2}{29} a^{2} - \frac{1}{29} a + \frac{1}{29}$, $\frac{1}{145} a^{8} - \frac{11}{145} a^{6} - \frac{3}{145} a^{5} + \frac{13}{29} a^{4} - \frac{14}{29} a^{3} + \frac{6}{29} a^{2} + \frac{12}{29} a - \frac{11}{29}$, $\frac{1}{725} a^{9} + \frac{12}{145} a^{6} - \frac{6}{145} a^{5} - \frac{3}{29} a^{4} - \frac{13}{29} a^{3} + \frac{1}{29} a^{2} + \frac{13}{29} a + \frac{8}{29}$, $\frac{1}{725} a^{10} + \frac{7}{145} a^{6} - \frac{1}{145} a^{5} - \frac{4}{29} a^{4} + \frac{2}{29} a^{3} - \frac{11}{29} a^{2} - \frac{9}{29} a - \frac{12}{29}$, $\frac{1}{725} a^{11} + \frac{9}{145} a^{6} - \frac{7}{145} a^{5} - \frac{8}{29} a^{3} + \frac{6}{29} a^{2} - \frac{5}{29} a - \frac{7}{29}$, $\frac{1}{725} a^{12} + \frac{2}{29} a^{6} - \frac{4}{145} a^{5} + \frac{6}{29} a^{4} + \frac{14}{29} a^{3} + \frac{6}{29} a^{2} + \frac{2}{29} a - \frac{9}{29}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4111386187.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 156 |
| The 13 conjugacy class representatives for $F_{13}$ |
| Character table for $F_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| $5$ | 5.13.12.1 | $x^{13} - 5$ | $13$ | $1$ | $12$ | $C_{13}:C_4$ | $[\ ]_{13}^{4}$ |
| $13$ | 13.13.13.1 | $x^{13} + 13 x + 13$ | $13$ | $1$ | $13$ | $F_{13}$ | $[13/12]_{12}$ |