Normalized defining polynomial
\( x^{13} - x^{12} - 60 x^{11} + 27 x^{10} + 1199 x^{9} - 33 x^{8} - 9610 x^{7} - 3352 x^{6} + 33548 x^{5} + 20328 x^{4} - 47723 x^{3} - 34869 x^{2} + 21271 x + 15667 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25542038069936263923006961=131^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(131\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{131}(1,·)$, $\chi_{131}(99,·)$, $\chi_{131}(39,·)$, $\chi_{131}(80,·)$, $\chi_{131}(107,·)$, $\chi_{131}(45,·)$, $\chi_{131}(112,·)$, $\chi_{131}(113,·)$, $\chi_{131}(52,·)$, $\chi_{131}(84,·)$, $\chi_{131}(60,·)$, $\chi_{131}(62,·)$, $\chi_{131}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3869} a^{11} + \frac{495}{3869} a^{10} + \frac{1213}{3869} a^{9} - \frac{1773}{3869} a^{8} + \frac{987}{3869} a^{7} - \frac{1345}{3869} a^{6} - \frac{1792}{3869} a^{5} + \frac{849}{3869} a^{4} + \frac{7}{73} a^{3} + \frac{377}{3869} a^{2} + \frac{197}{3869} a - \frac{1849}{3869}$, $\frac{1}{29655505980893777} a^{12} + \frac{2786585719338}{29655505980893777} a^{11} + \frac{8307218062751569}{29655505980893777} a^{10} - \frac{5608908248182115}{29655505980893777} a^{9} - \frac{7315472545156425}{29655505980893777} a^{8} - \frac{5769496573751300}{29655505980893777} a^{7} - \frac{11587114687714914}{29655505980893777} a^{6} + \frac{6380121130974331}{29655505980893777} a^{5} - \frac{5444767598768430}{29655505980893777} a^{4} - \frac{3678758867361965}{29655505980893777} a^{3} + \frac{2424995795257099}{29655505980893777} a^{2} - \frac{223606030901704}{29655505980893777} a - \frac{9357701767805873}{29655505980893777}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 292369424.433 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $131$ | 131.13.12.1 | $x^{13} - 131$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |