Normalized defining polynomial
\( x^{13} - x^{12} - 276 x^{11} + 1967 x^{10} + 8169 x^{9} - 109375 x^{8} + 114077 x^{7} + 1684091 x^{6} - 4924742 x^{5} - 5465967 x^{4} + 34969245 x^{3} - 20502539 x^{2} - 55304818 x + 57031547 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2133643557240451317422184503752801=599^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $366.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $599$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(599\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{599}(1,·)$, $\chi_{599}(421,·)$, $\chi_{599}(361,·)$, $\chi_{599}(459,·)$, $\chi_{599}(338,·)$, $\chi_{599}(270,·)$, $\chi_{599}(335,·)$, $\chi_{599}(432,·)$, $\chi_{599}(434,·)$, $\chi_{599}(19,·)$, $\chi_{599}(212,·)$, $\chi_{599}(375,·)$, $\chi_{599}(536,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{128109284441928108968429961621641041} a^{12} + \frac{59758820702796741030183147213264288}{128109284441928108968429961621641041} a^{11} + \frac{20611808671482864972647267699180156}{128109284441928108968429961621641041} a^{10} + \frac{31169912239317186086708644895547706}{128109284441928108968429961621641041} a^{9} - \frac{6304058097457155210357265093578076}{128109284441928108968429961621641041} a^{8} + \frac{50503195829424519998606746746513066}{128109284441928108968429961621641041} a^{7} - \frac{50948838601702200056188297912023305}{128109284441928108968429961621641041} a^{6} - \frac{26326866063919171382431247220419188}{128109284441928108968429961621641041} a^{5} + \frac{9883217898291327366882993947128655}{128109284441928108968429961621641041} a^{4} + \frac{56538401497877282618378393873013980}{128109284441928108968429961621641041} a^{3} + \frac{34991072369985416435391707779506781}{128109284441928108968429961621641041} a^{2} + \frac{37085215665199627181185807068611159}{128109284441928108968429961621641041} a + \frac{29904214785857672478273274219438499}{128109284441928108968429961621641041}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1689788670896.741 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.13.0.1}{13} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 599 | Data not computed | ||||||