Normalized defining polynomial
\( x^{13} - x^{12} - 396 x^{11} + 1235 x^{10} + 45719 x^{9} - 158783 x^{8} - 2232951 x^{7} + 7665285 x^{6} + 47857178 x^{5} - 162308625 x^{4} - 381260855 x^{3} + 1359880245 x^{2} + 391778734 x - 2211739517 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161405364891475526005003176560483281=859^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $510.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(859\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{859}(1,·)$, $\chi_{859}(100,·)$, $\chi_{859}(773,·)$, $\chi_{859}(551,·)$, $\chi_{859}(555,·)$, $\chi_{859}(524,·)$, $\chi_{859}(718,·)$, $\chi_{859}(463,·)$, $\chi_{859}(849,·)$, $\chi_{859}(374,·)$, $\chi_{859}(503,·)$, $\chi_{859}(124,·)$, $\chi_{859}(478,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{13} a^{7} - \frac{5}{13} a^{6} - \frac{1}{13} a^{5} - \frac{1}{13} a^{3} + \frac{5}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{13} a^{8} - \frac{5}{13} a^{5} - \frac{1}{13} a^{4} + \frac{5}{13} a$, $\frac{1}{13} a^{9} - \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{5}{13} a^{2}$, $\frac{1}{13} a^{10} - \frac{5}{13} a^{5} - \frac{1}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{138073} a^{11} - \frac{2762}{138073} a^{10} - \frac{4923}{138073} a^{9} + \frac{1842}{138073} a^{8} - \frac{3676}{138073} a^{7} - \frac{54809}{138073} a^{6} + \frac{20570}{138073} a^{5} - \frac{17624}{138073} a^{4} + \frac{43104}{138073} a^{3} + \frac{26566}{138073} a^{2} - \frac{67920}{138073} a + \frac{212}{559}$, $\frac{1}{305691644957705720852691536460925473701} a^{12} + \frac{912580108308589324221101760190755}{305691644957705720852691536460925473701} a^{11} - \frac{8005849721853050070831513697695635895}{305691644957705720852691536460925473701} a^{10} - \frac{10153359039024277405295773617395404127}{305691644957705720852691536460925473701} a^{9} + \frac{4842513277263478108103890167698496181}{305691644957705720852691536460925473701} a^{8} + \frac{9191435795233787455000484918289928575}{305691644957705720852691536460925473701} a^{7} - \frac{70608549062610406423696322390033302169}{305691644957705720852691536460925473701} a^{6} + \frac{78758620202357390475049717532230050166}{305691644957705720852691536460925473701} a^{5} + \frac{85767248751362875280431298551033766200}{305691644957705720852691536460925473701} a^{4} - \frac{3724466169815273764219023060641349942}{305691644957705720852691536460925473701} a^{3} + \frac{5032625045026113012089591302260955517}{305691644957705720852691536460925473701} a^{2} - \frac{65161206351532277691333243197115648248}{305691644957705720852691536460925473701} a - \frac{445124450370505974869278466651657168}{1237617995780185104666767354092815683}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107792443172161.95 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 13 |
| The 13 conjugacy class representatives for $C_{13}$ |
| Character table for $C_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.13.0.1}{13} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.13.0.1}{13} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{13}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 859 | Data not computed | ||||||