Properties

Label 13.11.4161299413431551.1
Degree $13$
Signature $[11, 1]$
Discriminant $-4.161\times 10^{15}$
Root discriminant \(15.90\)
Ramified primes $137,14653,29411,70481$
Class number $1$
Class group trivial
Galois group $S_{13}$ (as 13T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1)
 
gp: K = bnfinit(y^13 - y^12 - 9*y^11 + 5*y^10 + 27*y^9 - 6*y^8 - 29*y^7 - 3*y^6 + y^5 + 6*y^4 + 12*y^3 - 4*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1)
 

\( x^{13} - x^{12} - 9x^{11} + 5x^{10} + 27x^{9} - 6x^{8} - 29x^{7} - 3x^{6} + x^{5} + 6x^{4} + 12x^{3} - 4x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $13$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[11, 1]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4161299413431551\) \(\medspace = -\,137\cdot 14653\cdot 29411\cdot 70481\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(15.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $137^{1/2}14653^{1/2}29411^{1/2}70481^{1/2}\approx 64508134.47489821$
Ramified primes:   \(137\), \(14653\), \(29411\), \(70481\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-41612\!\cdots\!31551}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $16a^{12}-23a^{11}-134a^{10}+138a^{9}+373a^{8}-255a^{7}-357a^{6}+101a^{5}-24a^{4}+108a^{3}+145a^{2}-61a-39$, $3a^{12}-5a^{11}-24a^{10}+31a^{9}+64a^{8}-60a^{7}-59a^{6}+26a^{5}-3a^{4}+27a^{3}+22a^{2}-15a-7$, $a^{11}-a^{10}-8a^{9}+4a^{8}+19a^{7}-2a^{6}-10a^{5}-5a^{4}-9a^{3}+a^{2}+3a+1$, $15a^{12}-22a^{11}-126a^{10}+134a^{9}+354a^{8}-253a^{7}-347a^{6}+106a^{5}-15a^{4}+107a^{3}+142a^{2}-63a-39$, $3a^{12}-4a^{11}-25a^{10}+23a^{9}+68a^{8}-41a^{7}-61a^{6}+17a^{5}-10a^{4}+14a^{3}+28a^{2}-9a-6$, $7a^{12}-10a^{11}-59a^{10}+60a^{9}+167a^{8}-112a^{7}-167a^{6}+48a^{5}-4a^{4}+45a^{3}+69a^{2}-29a-19$, $5a^{12}-6a^{11}-43a^{10}+33a^{9}+121a^{8}-52a^{7}-113a^{6}+9a^{5}-15a^{4}+24a^{3}+47a^{2}-7a-9$, $4a^{12}-5a^{11}-35a^{10}+30a^{9}+102a^{8}-58a^{7}-106a^{6}+29a^{5}+a^{4}+23a^{3}+45a^{2}-19a-12$, $13a^{12}-18a^{11}-110a^{10}+107a^{9}+309a^{8}-195a^{7}-298a^{6}+75a^{5}-21a^{4}+81a^{3}+123a^{2}-46a-32$, $19a^{12}-27a^{11}-160a^{10}+163a^{9}+447a^{8}-305a^{7}-429a^{6}+125a^{5}-29a^{4}+130a^{3}+175a^{2}-74a-46$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1435.89972821 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{11}\cdot(2\pi)^{1}\cdot 1435.89972821 \cdot 1}{2\cdot\sqrt{4161299413431551}}\cr\approx \mathstrut & 0.143215312733 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - x^12 - 9*x^11 + 5*x^10 + 27*x^9 - 6*x^8 - 29*x^7 - 3*x^6 + x^5 + 6*x^4 + 12*x^3 - 4*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{13}$ (as 13T9):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 6227020800
The 101 conjugacy class representatives for $S_{13}$
Character table for $S_{13}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 26 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }$ ${\href{/padicField/3.13.0.1}{13} }$ ${\href{/padicField/5.13.0.1}{13} }$ ${\href{/padicField/7.13.0.1}{13} }$ ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ ${\href{/padicField/13.13.0.1}{13} }$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.13.0.1}{13} }$ ${\href{/padicField/37.13.0.1}{13} }$ ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.13.0.1}{13} }$ ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(137\) Copy content Toggle raw display $\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.4.0.1$x^{4} + x^{2} + 95 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
137.4.0.1$x^{4} + x^{2} + 95 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
\(14653\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(29411\) Copy content Toggle raw display $\Q_{29411}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(70481\) Copy content Toggle raw display $\Q_{70481}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$