Normalized defining polynomial
\( x^{13} - 2 x^{12} - 14 x^{11} + 84 x^{10} - 189 x^{9} + 211 x^{8} - 212 x^{7} + 213 x^{6} + 230 x^{5} - 987 x^{4} + 1476 x^{3} - 783 x^{2} - 1296 x + 1701 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4827084047654211776161=4111^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $4111$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{63} a^{9} - \frac{1}{7} a^{8} + \frac{4}{63} a^{7} - \frac{1}{9} a^{6} + \frac{19}{63} a^{5} + \frac{10}{21} a^{4} + \frac{10}{63} a^{3} - \frac{19}{63} a^{2} - \frac{2}{7} a$, $\frac{1}{189} a^{10} + \frac{1}{189} a^{9} - \frac{2}{189} a^{8} - \frac{10}{63} a^{7} - \frac{1}{21} a^{6} - \frac{32}{189} a^{5} + \frac{16}{189} a^{4} + \frac{2}{21} a^{3} - \frac{40}{189} a^{2} - \frac{2}{7} a + \frac{1}{3}$, $\frac{1}{567} a^{11} + \frac{1}{567} a^{10} - \frac{2}{567} a^{9} + \frac{11}{189} a^{8} + \frac{2}{21} a^{7} - \frac{32}{567} a^{6} + \frac{16}{567} a^{5} + \frac{10}{21} a^{4} + \frac{212}{567} a^{3} - \frac{3}{7} a^{2} + \frac{1}{9} a$, $\frac{1}{12766802769} a^{12} + \frac{9020224}{12766802769} a^{11} + \frac{546067}{1823828967} a^{10} + \frac{15878981}{4255600923} a^{9} + \frac{164654267}{1418533641} a^{8} + \frac{971735881}{12766802769} a^{7} - \frac{173987246}{12766802769} a^{6} - \frac{45796726}{157614849} a^{5} + \frac{172090886}{12766802769} a^{4} + \frac{602979941}{1418533641} a^{3} - \frac{446530807}{1418533641} a^{2} + \frac{23674375}{157614849} a - \frac{10075957}{22516407}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 808459.579319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 26 |
| The 8 conjugacy class representatives for $D_{13}$ |
| Character table for $D_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.13.0.1}{13} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.13.0.1}{13} }$ | ${\href{/LocalNumberField/47.13.0.1}{13} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 4111 | Data not computed | ||||||