Properties

Label 13.1.36228602433...2481.1
Degree $13$
Signature $[1, 6]$
Discriminant $3919^{6}$
Root discriminant $45.54$
Ramified prime $3919$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $D_{13}$ (as 13T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![489, 568, 771, -80, -582, -543, 78, 128, 108, -12, -9, -8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^13 - 8*x^11 - 9*x^10 - 12*x^9 + 108*x^8 + 128*x^7 + 78*x^6 - 543*x^5 - 582*x^4 - 80*x^3 + 771*x^2 + 568*x + 489)
 
gp: K = bnfinit(x^13 - 8*x^11 - 9*x^10 - 12*x^9 + 108*x^8 + 128*x^7 + 78*x^6 - 543*x^5 - 582*x^4 - 80*x^3 + 771*x^2 + 568*x + 489, 1)
 

Normalized defining polynomial

\( x^{13} - 8 x^{11} - 9 x^{10} - 12 x^{9} + 108 x^{8} + 128 x^{7} + 78 x^{6} - 543 x^{5} - 582 x^{4} - 80 x^{3} + 771 x^{2} + 568 x + 489 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $13$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3622860243332643912481=3919^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3919$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{33} a^{10} + \frac{1}{11} a^{9} - \frac{1}{11} a^{8} + \frac{4}{33} a^{7} + \frac{5}{11} a^{6} + \frac{2}{33} a^{5} + \frac{4}{11} a^{4} - \frac{1}{3} a^{3} + \frac{5}{33} a^{2} - \frac{16}{33} a + \frac{2}{11}$, $\frac{1}{627} a^{11} - \frac{1}{627} a^{10} - \frac{4}{627} a^{9} + \frac{49}{627} a^{8} + \frac{98}{627} a^{7} - \frac{223}{627} a^{6} + \frac{37}{627} a^{5} - \frac{191}{627} a^{4} + \frac{82}{627} a^{3} - \frac{45}{209} a^{2} + \frac{92}{627} a + \frac{47}{209}$, $\frac{1}{12372538959} a^{12} - \frac{5161600}{12372538959} a^{11} - \frac{125464222}{12372538959} a^{10} + \frac{51679387}{651186261} a^{9} - \frac{65730043}{651186261} a^{8} - \frac{1481850965}{12372538959} a^{7} - \frac{2007880016}{12372538959} a^{6} + \frac{401051095}{1124776269} a^{5} + \frac{1653549868}{12372538959} a^{4} + \frac{1337751188}{12372538959} a^{3} + \frac{1009293206}{12372538959} a^{2} + \frac{2273156689}{12372538959} a - \frac{1017066560}{4124179653}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 635463.826032 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{13}$ (as 13T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 26
The 8 conjugacy class representatives for $D_{13}$
Character table for $D_{13}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.13.0.1}{13} }$ ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ ${\href{/LocalNumberField/5.13.0.1}{13} }$ ${\href{/LocalNumberField/7.13.0.1}{13} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.13.0.1}{13} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.13.0.1}{13} }$ ${\href{/LocalNumberField/31.13.0.1}{13} }$ ${\href{/LocalNumberField/37.13.0.1}{13} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3919Data not computed