Properties

Label 13.1.330928743953809.1
Degree $13$
Signature $[1, 6]$
Discriminant $3.309\times 10^{14}$
Root discriminant $13.09$
Ramified prime $263$
Class number $1$
Class group trivial
Galois group $D_{13}$ (as 13T2)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^13 - 6*x^12 + 15*x^11 - 21*x^10 + 19*x^9 - 13*x^8 + 12*x^7 - 22*x^6 + 36*x^5 - 38*x^4 + 27*x^3 - 16*x^2 + 8*x - 1)
 
gp: K = bnfinit(x^13 - 6*x^12 + 15*x^11 - 21*x^10 + 19*x^9 - 13*x^8 + 12*x^7 - 22*x^6 + 36*x^5 - 38*x^4 + 27*x^3 - 16*x^2 + 8*x - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 8, -16, 27, -38, 36, -22, 12, -13, 19, -21, 15, -6, 1]);
 

\( x^{13} - 6 x^{12} + 15 x^{11} - 21 x^{10} + 19 x^{9} - 13 x^{8} + 12 x^{7} - 22 x^{6} + 36 x^{5} - 38 x^{4} + 27 x^{3} - 16 x^{2} + 8 x - 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $13$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[1, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(330928743953809\)\(\medspace = 263^{6}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $13.09$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $263$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{205} a^{12} + \frac{2}{205} a^{11} - \frac{51}{205} a^{10} + \frac{63}{205} a^{9} - \frac{51}{205} a^{8} + \frac{6}{41} a^{7} + \frac{6}{205} a^{6} - \frac{56}{205} a^{5} - \frac{43}{205} a^{4} + \frac{28}{205} a^{3} + \frac{87}{205} a^{2} - \frac{99}{205} a - \frac{46}{205}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 88.0923358606 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{1}\cdot(2\pi)^{6}\cdot 88.0923358606 \cdot 1}{2\sqrt{330928743953809}}\approx 0.297954597175$

Galois group

$D_{13}$ (as 13T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 26
The 8 conjugacy class representatives for $D_{13}$
Character table for $D_{13}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Galois closure: Deg 26

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/LocalNumberField/2.13.0.1}{13} }$ ${\href{/LocalNumberField/3.13.0.1}{13} }$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.13.0.1}{13} }$ ${\href{/LocalNumberField/13.13.0.1}{13} }$ ${\href{/LocalNumberField/17.13.0.1}{13} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.13.0.1}{13} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.13.0.1}{13} }$ ${\href{/LocalNumberField/37.13.0.1}{13} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.13.0.1}{13} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
263Data not computed

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.263.2t1.a.a$1$ $ 263 $ \(\Q(\sqrt{-263}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.263.13t2.a.b$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.263.13t2.a.f$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.263.13t2.a.d$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.263.13t2.a.a$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.263.13t2.a.c$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.263.13t2.a.e$2$ $ 263 $ 13.1.330928743953809.1 $D_{13}$ (as 13T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.