Normalized defining polynomial
\( x^{13} - 6 x^{12} + 17 x^{11} - 25 x^{10} + 51 x^{9} - 65 x^{8} - 62 x^{7} + 849 x^{6} - 3034 x^{5} + 9140 x^{4} - 13920 x^{3} + 10576 x^{2} - 3936 x + 576 \)
Invariants
| Degree: | $13$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2528507645606750993641=3691^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3691$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{5} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{36} a^{8} - \frac{1}{36} a^{7} + \frac{1}{36} a^{6} - \frac{1}{36} a^{5} - \frac{7}{36} a^{4} + \frac{13}{36} a^{3} + \frac{7}{18} a^{2} - \frac{7}{18} a + \frac{1}{3}$, $\frac{1}{36} a^{9} - \frac{1}{18} a^{5} + \frac{1}{6} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{144} a^{10} + \frac{1}{144} a^{8} + \frac{5}{144} a^{7} + \frac{5}{144} a^{6} - \frac{7}{144} a^{5} + \frac{5}{36} a^{4} - \frac{11}{144} a^{3} - \frac{1}{18} a - \frac{1}{6}$, $\frac{1}{1728} a^{11} - \frac{1}{864} a^{10} + \frac{7}{576} a^{9} - \frac{13}{1728} a^{8} + \frac{59}{1728} a^{7} - \frac{3}{64} a^{6} + \frac{65}{864} a^{5} + \frac{397}{1728} a^{4} - \frac{31}{96} a^{3} + \frac{49}{216} a^{2} + \frac{91}{216} a - \frac{1}{36}$, $\frac{1}{1285632} a^{12} - \frac{7}{160704} a^{11} + \frac{313}{142848} a^{10} + \frac{1973}{1285632} a^{9} + \frac{8537}{1285632} a^{8} + \frac{461}{15872} a^{7} + \frac{3203}{160704} a^{6} - \frac{30431}{1285632} a^{5} - \frac{475}{35712} a^{4} + \frac{46403}{321408} a^{3} - \frac{19031}{160704} a^{2} + \frac{1759}{6696} a + \frac{1369}{4464}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4940532.71808 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 26 |
| The 8 conjugacy class representatives for $D_{13}$ |
| Character table for $D_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.13.0.1}{13} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3691 | Data not computed | ||||||