Normalized defining polynomial
\( x^{13} + 3x - 1 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(14215446890071442941\)
\(\medspace = 41926259\cdot 339058318799\)
|
| |
| Root discriminant: | \(29.74\) |
| |
| Galois root discriminant: | $41926259^{1/2}339058318799^{1/2}\approx 3770337768.69811$ | ||
| Ramified primes: |
\(41926259\), \(339058318799\)
|
| |
| Discriminant root field: | $\Q(\sqrt{14215\!\cdots\!42941}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{12}+a^{10}+a^{8}+a^{6}-a^{2}+1$, $a^{10}-a^{8}-a^{5}+2a^{3}-a+1$, $a^{7}+2a^{4}+2a$, $a^{10}+a^{8}+a^{7}+a^{5}-a^{3}+a^{2}-2a$, $a^{11}-3a^{9}+5a^{8}-3a^{7}-4a^{6}+14a^{5}-23a^{4}+27a^{3}-24a^{2}+15a-4$
|
| |
| Regulator: | \( 38029.5850725 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 38029.5850725 \cdot 1}{2\cdot\sqrt{14215446890071442941}}\cr\approx \mathstrut & 0.620612528516 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 6227020800 |
| The 101 conjugacy class representatives for $S_{13}$ |
| Character table for $S_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.5.0.1}{5} }$ | ${\href{/padicField/3.3.0.1}{3} }^{4}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.13.0.1}{13} }$ | ${\href{/padicField/37.11.0.1}{11} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(41926259\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | ||
|
\(339058318799\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ |