Properties

Label 12.8.61132828589969773.1
Degree $12$
Signature $[8, 2]$
Discriminant $6.113\times 10^{16}$
Root discriminant \(25.05\)
Ramified primes $7,13$
Class number $1$
Class group trivial
Galois group $C_4\times A_4$ (as 12T29)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13)
 
gp: K = bnfinit(y^12 - 3*y^11 - 9*y^10 + 29*y^9 + 41*y^8 - 82*y^7 - 263*y^6 + 36*y^5 + 705*y^4 + 468*y^3 - 182*y^2 - 169*y - 13, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13)
 

\( x^{12} - 3 x^{11} - 9 x^{10} + 29 x^{9} + 41 x^{8} - 82 x^{7} - 263 x^{6} + 36 x^{5} + 705 x^{4} + \cdots - 13 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(61132828589969773\) \(\medspace = 7^{8}\cdot 13^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(25.05\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}13^{3/4}\approx 25.052796318948193$
Ramified primes:   \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{702819768927}a^{11}+\frac{32731440254}{702819768927}a^{10}-\frac{3442889489}{234273256309}a^{9}+\frac{20475679100}{234273256309}a^{8}-\frac{77735838932}{702819768927}a^{7}+\frac{300335868640}{702819768927}a^{6}+\frac{311212868260}{702819768927}a^{5}+\frac{27327639675}{234273256309}a^{4}+\frac{69427670132}{702819768927}a^{3}+\frac{269093879063}{702819768927}a^{2}+\frac{88898192902}{234273256309}a+\frac{180759154810}{702819768927}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{7465533626}{234273256309}a^{11}-\frac{28261385277}{234273256309}a^{10}-\frac{44922686467}{234273256309}a^{9}+\frac{250155948191}{234273256309}a^{8}+\frac{112995870800}{234273256309}a^{7}-\frac{691568338963}{234273256309}a^{6}-\frac{1443518928668}{234273256309}a^{5}+\frac{1388355057286}{234273256309}a^{4}+\frac{4153714961929}{234273256309}a^{3}+\frac{423933710824}{234273256309}a^{2}-\frac{1575907067709}{234273256309}a-\frac{266980385914}{234273256309}$, $\frac{9134792390}{234273256309}a^{11}-\frac{34756412953}{234273256309}a^{10}-\frac{53759256463}{234273256309}a^{9}+\frac{304922448359}{234273256309}a^{8}+\frac{130533902919}{234273256309}a^{7}-\frac{826941869175}{234273256309}a^{6}-\frac{1771101958537}{234273256309}a^{5}+\frac{1663910746634}{234273256309}a^{4}+\frac{5119366861401}{234273256309}a^{3}+\frac{544301490564}{234273256309}a^{2}-\frac{1946803936103}{234273256309}a-\frac{461497774722}{234273256309}$, $\frac{10576806332}{702819768927}a^{11}-\frac{12743312347}{234273256309}a^{10}-\frac{67077495167}{702819768927}a^{9}+\frac{327192578603}{702819768927}a^{8}+\frac{206546846477}{702819768927}a^{7}-\frac{261170855019}{234273256309}a^{6}-\frac{768456216841}{234273256309}a^{5}+\frac{1084323931037}{702819768927}a^{4}+\frac{6341551614608}{702819768927}a^{3}+\frac{2561815279409}{702819768927}a^{2}-\frac{1141423368436}{702819768927}a-\frac{795657740477}{702819768927}$, $\frac{38842485106}{702819768927}a^{11}-\frac{131640779086}{702819768927}a^{10}-\frac{289344843476}{702819768927}a^{9}+\frac{401485303816}{234273256309}a^{8}+\frac{1068195426317}{702819768927}a^{7}-\frac{3301430374198}{702819768927}a^{6}-\frac{8750132363333}{702819768927}a^{5}+\frac{3973882898912}{702819768927}a^{4}+\frac{23823105787487}{702819768927}a^{3}+\frac{10434173353462}{702819768927}a^{2}-\frac{5325459216209}{702819768927}a-\frac{823894076591}{234273256309}$, $\frac{13216820182}{234273256309}a^{11}-\frac{50720991214}{234273256309}a^{10}-\frac{73668942086}{234273256309}a^{9}+\frac{437083592937}{234273256309}a^{8}+\frac{157283474826}{234273256309}a^{7}-\frac{1151264855003}{234273256309}a^{6}-\frac{2454654067344}{234273256309}a^{5}+\frac{2430148017950}{234273256309}a^{4}+\frac{6800717374100}{234273256309}a^{3}+\frac{501451668900}{234273256309}a^{2}-\frac{2076976936068}{234273256309}a-\frac{450077494517}{234273256309}$, $\frac{20278451660}{234273256309}a^{11}-\frac{200631626678}{702819768927}a^{10}-\frac{488021180596}{702819768927}a^{9}+\frac{1920541785886}{702819768927}a^{8}+\frac{629219023342}{234273256309}a^{7}-\frac{5597073479968}{702819768927}a^{6}-\frac{14074001913325}{702819768927}a^{5}+\frac{6401180883568}{702819768927}a^{4}+\frac{40607568827522}{702819768927}a^{3}+\frac{15080140567430}{702819768927}a^{2}-\frac{14356822799264}{702819768927}a-\frac{4209951974459}{702819768927}$, $\frac{57776022284}{702819768927}a^{11}-\frac{211659987866}{702819768927}a^{10}-\frac{377323317724}{702819768927}a^{9}+\frac{639281087655}{234273256309}a^{8}+\frac{1080424796086}{702819768927}a^{7}-\frac{5379491011424}{702819768927}a^{6}-\frac{11575070306320}{702819768927}a^{5}+\frac{9571800487228}{702819768927}a^{4}+\frac{33792957685510}{702819768927}a^{3}+\frac{4789143199604}{702819768927}a^{2}-\frac{12302153825365}{702819768927}a-\frac{245150853479}{234273256309}$, $\frac{11819794546}{702819768927}a^{11}-\frac{15518072930}{234273256309}a^{10}-\frac{67690564234}{702819768927}a^{9}+\frac{423275265970}{702819768927}a^{8}+\frac{132440765923}{702819768927}a^{7}-\frac{430397483944}{234273256309}a^{6}-\frac{675062711827}{234273256309}a^{5}+\frac{3080741240821}{702819768927}a^{4}+\frac{6119593271179}{702819768927}a^{3}-\frac{1290014146937}{702819768927}a^{2}-\frac{3586297834691}{702819768927}a+\frac{1400356120589}{702819768927}$, $\frac{2409354367}{234273256309}a^{11}-\frac{27669475513}{702819768927}a^{10}-\frac{11321215654}{234273256309}a^{9}+\frac{204241828712}{702819768927}a^{8}+\frac{89246923277}{702819768927}a^{7}-\frac{130607560616}{234273256309}a^{6}-\frac{1520100202166}{702819768927}a^{5}+\frac{270680914448}{234273256309}a^{4}+\frac{2865513651103}{702819768927}a^{3}+\frac{3039954915242}{702819768927}a^{2}-\frac{117482689316}{702819768927}a-\frac{418644674148}{234273256309}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12117.551502516422 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 12117.551502516422 \cdot 1}{2\cdot\sqrt{61132828589969773}}\cr\approx \mathstrut & 0.247655133802489 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 - 9*x^10 + 29*x^9 + 41*x^8 - 82*x^7 - 263*x^6 + 36*x^5 + 705*x^4 + 468*x^3 - 182*x^2 - 169*x - 13);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\times A_4$ (as 12T29):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 48
The 16 conjugacy class representatives for $C_4\times A_4$
Character table for $C_4\times A_4$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\zeta_{7})^+\), 6.6.5274997.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 sibling: 16.0.134308824412163591281.1
Degree 24 siblings: deg 24, deg 24
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }$ ${\href{/padicField/3.3.0.1}{3} }^{4}$ ${\href{/padicField/5.12.0.1}{12} }$ R ${\href{/padicField/11.12.0.1}{12} }$ R ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.12.0.1}{12} }$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.4.0.1}{4} }^{3}$ ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{8}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.12.8.1$x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(13\) Copy content Toggle raw display 13.4.3.1$x^{4} + 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.2$x^{4} + 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.1$x^{4} + 52$$4$$1$$3$$C_4$$[\ ]_{4}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.13.2t1.a.a$1$ $ 13 $ \(\Q(\sqrt{13}) \) $C_2$ (as 2T1) $1$ $1$
* 1.91.6t1.j.a$1$ $ 7 \cdot 13 $ 6.6.5274997.1 $C_6$ (as 6T1) $0$ $1$
* 1.7.3t1.a.a$1$ $ 7 $ \(\Q(\zeta_{7})^+\) $C_3$ (as 3T1) $0$ $1$
* 1.91.6t1.j.b$1$ $ 7 \cdot 13 $ 6.6.5274997.1 $C_6$ (as 6T1) $0$ $1$
* 1.7.3t1.a.b$1$ $ 7 $ \(\Q(\zeta_{7})^+\) $C_3$ (as 3T1) $0$ $1$
1.13.4t1.a.a$1$ $ 13 $ 4.0.2197.1 $C_4$ (as 4T1) $0$ $-1$
1.13.4t1.a.b$1$ $ 13 $ 4.0.2197.1 $C_4$ (as 4T1) $0$ $-1$
1.91.12t1.a.a$1$ $ 7 \cdot 13 $ 12.0.61132828589969773.1 $C_{12}$ (as 12T1) $0$ $-1$
1.91.12t1.a.b$1$ $ 7 \cdot 13 $ 12.0.61132828589969773.1 $C_{12}$ (as 12T1) $0$ $-1$
1.91.12t1.a.c$1$ $ 7 \cdot 13 $ 12.0.61132828589969773.1 $C_{12}$ (as 12T1) $0$ $-1$
1.91.12t1.a.d$1$ $ 7 \cdot 13 $ 12.0.61132828589969773.1 $C_{12}$ (as 12T1) $0$ $-1$
3.8281.4t4.b.a$3$ $ 7^{2} \cdot 13^{2}$ 4.0.8281.1 $A_4$ (as 4T4) $1$ $-1$
3.637.6t6.a.a$3$ $ 7^{2} \cdot 13 $ 6.2.31213.1 $A_4\times C_2$ (as 6T6) $1$ $-1$
* 3.107653.12t29.a.a$3$ $ 7^{2} \cdot 13^{3}$ 12.8.61132828589969773.1 $C_4\times A_4$ (as 12T29) $0$ $1$
* 3.107653.12t29.a.b$3$ $ 7^{2} \cdot 13^{3}$ 12.8.61132828589969773.1 $C_4\times A_4$ (as 12T29) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.