Normalized defining polynomial
\( x^{12} - 2 x^{11} - 18 x^{10} + 78 x^{9} - 127 x^{8} + 86 x^{7} + 158 x^{6} - 450 x^{5} + 168 x^{4} + \cdots + 4 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{13/6}17^{11/12}\approx 60.275825724785875$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}$, $\frac{1}{8}a^{10}+\frac{1}{8}a^{8}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{26312672}a^{11}-\frac{320167}{26312672}a^{10}+\frac{5253761}{26312672}a^{9}-\frac{6520215}{26312672}a^{8}+\frac{622389}{6578168}a^{7}-\frac{2618215}{13156336}a^{6}-\frac{860427}{6578168}a^{5}-\frac{3818323}{13156336}a^{4}-\frac{6514077}{13156336}a^{3}-\frac{2388931}{13156336}a^{2}-\frac{2328053}{6578168}a+\frac{2028997}{6578168}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{91733311}{26312672}a^{11}-\frac{159319365}{26312672}a^{10}-\frac{1692393409}{26312672}a^{9}+\frac{6708185611}{26312672}a^{8}-\frac{2474408321}{6578168}a^{7}+\frac{2670956423}{13156336}a^{6}+\frac{3950564217}{6578168}a^{5}-\frac{18523189185}{13156336}a^{4}+\frac{2883753877}{13156336}a^{3}+\frac{9034075431}{13156336}a^{2}+\frac{76104989}{6578168}a-\frac{325358545}{6578168}$, $\frac{24618093}{26312672}a^{11}-\frac{48623703}{26312672}a^{10}-\frac{441493171}{26312672}a^{9}+\frac{1903912921}{26312672}a^{8}-\frac{782588531}{6578168}a^{7}+\frac{1126630421}{13156336}a^{6}+\frac{900285255}{6578168}a^{5}-\frac{5371602155}{13156336}a^{4}+\frac{2142773759}{13156336}a^{3}+\frac{1721596109}{13156336}a^{2}-\frac{179955145}{6578168}a-\frac{22146107}{6578168}$, $\frac{49252317}{26312672}a^{11}-\frac{107866655}{26312672}a^{10}-\frac{861371491}{26312672}a^{9}+\frac{3996043617}{26312672}a^{8}-\frac{1774205847}{6578168}a^{7}+\frac{2974271717}{13156336}a^{6}+\frac{1506584035}{6578168}a^{5}-\frac{11406291523}{13156336}a^{4}+\frac{6608720367}{13156336}a^{3}+\frac{2254895077}{13156336}a^{2}-\frac{569473497}{6578168}a+\frac{28143357}{6578168}$, $\frac{4450751}{26312672}a^{11}-\frac{4397837}{26312672}a^{10}-\frac{87045393}{26312672}a^{9}+\frac{264243059}{26312672}a^{8}-\frac{63464097}{6578168}a^{7}-\frac{35231513}{13156336}a^{6}+\frac{241699877}{6578168}a^{5}-\frac{645271513}{13156336}a^{4}-\frac{436753899}{13156336}a^{3}+\frac{509101455}{13156336}a^{2}+\frac{76310909}{6578168}a-\frac{11096249}{6578168}$, $\frac{69088337}{26312672}a^{11}-\frac{166415251}{26312672}a^{10}-\frac{1174448815}{26312672}a^{9}+\frac{5866517885}{26312672}a^{8}-\frac{2797972887}{6578168}a^{7}+\frac{5303107289}{13156336}a^{6}+\frac{1606353011}{6578168}a^{5}-\frac{16796139383}{13156336}a^{4}+\frac{12740026747}{13156336}a^{3}+\frac{895814561}{13156336}a^{2}-\frac{984684693}{6578168}a+\frac{159769753}{6578168}$, $\frac{16883285}{13156336}a^{11}-\frac{28897879}{13156336}a^{10}-\frac{312377659}{13156336}a^{9}+\frac{1227135617}{13156336}a^{8}-\frac{446944385}{3289084}a^{7}+\frac{462434405}{6578168}a^{6}+\frac{738946867}{3289084}a^{5}-\frac{3383999867}{6578168}a^{4}+\frac{438189199}{6578168}a^{3}+\frac{1708435885}{6578168}a^{2}+\frac{26033611}{3289084}a-\frac{56778599}{3289084}$, $\frac{36076711}{26312672}a^{11}-\frac{62522973}{26312672}a^{10}-\frac{665995401}{26312672}a^{9}+\frac{2635897091}{26312672}a^{8}-\frac{969816033}{6578168}a^{7}+\frac{1038744815}{13156336}a^{6}+\frac{1559365225}{6578168}a^{5}-\frac{7286083225}{13156336}a^{4}+\frac{1111033933}{13156336}a^{3}+\frac{3538318543}{13156336}a^{2}+\frac{47349845}{6578168}a-\frac{121296105}{6578168}$, $\frac{5653091}{26312672}a^{11}-\frac{12753593}{26312672}a^{10}-\frac{97430013}{26312672}a^{9}+\frac{464842663}{26312672}a^{8}-\frac{214096129}{6578168}a^{7}+\frac{383444539}{13156336}a^{6}+\frac{152553201}{6578168}a^{5}-\frac{1322116933}{13156336}a^{4}+\frac{881392689}{13156336}a^{3}+\frac{151013699}{13156336}a^{2}-\frac{63918119}{6578168}a+\frac{6397595}{6578168}$, $\frac{6629367}{26312672}a^{11}-\frac{9302829}{26312672}a^{10}-\frac{132121609}{26312672}a^{9}+\frac{450986387}{26312672}a^{8}-\frac{110780237}{6578168}a^{7}-\frac{111911137}{13156336}a^{6}+\frac{443370921}{6578168}a^{5}-\frac{1283776329}{13156336}a^{4}-\frac{698396531}{13156336}a^{3}+\frac{1611939599}{13156336}a^{2}+\frac{127403805}{6578168}a-\frac{75460585}{6578168}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 678751.076549 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 678751.076549 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 3.23657893121 \end{aligned}\]
Galois group
$D_6\wr C_2$ (as 12T125):
A solvable group of order 288 |
The 27 conjugacy class representatives for $D_6\wr C_2$ |
Character table for $D_6\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.157216.1, 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |