Normalized defining polynomial
\( x^{12} - 4 x^{11} - 12 x^{10} + 168 x^{9} - 358 x^{8} - 884 x^{7} + 4494 x^{6} - 3024 x^{5} - 5547 x^{4} + 4624 x^{3} + 2078 x^{2} - 952 x - 328 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3529148062919932510208=2^{23}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{58} a^{6} - \frac{1}{29} a^{5} - \frac{4}{29} a^{4} + \frac{5}{29} a^{3} - \frac{17}{58} a^{2} + \frac{5}{29} a + \frac{11}{29}$, $\frac{1}{58} a^{7} - \frac{6}{29} a^{5} - \frac{3}{29} a^{4} + \frac{3}{58} a^{3} - \frac{12}{29} a^{2} - \frac{8}{29} a - \frac{7}{29}$, $\frac{1}{58} a^{8} + \frac{14}{29} a^{5} + \frac{23}{58} a^{4} - \frac{10}{29} a^{3} + \frac{6}{29} a^{2} - \frac{5}{29} a - \frac{13}{29}$, $\frac{1}{116} a^{9} - \frac{1}{116} a^{7} - \frac{25}{116} a^{5} + \frac{9}{29} a^{4} + \frac{19}{116} a^{3} - \frac{8}{29} a^{2} - \frac{1}{2} a + \frac{9}{29}$, $\frac{1}{580} a^{10} + \frac{1}{290} a^{9} - \frac{3}{580} a^{8} + \frac{1}{145} a^{7} - \frac{1}{116} a^{6} - \frac{33}{290} a^{5} - \frac{267}{580} a^{4} + \frac{8}{145} a^{3} + \frac{33}{290} a^{2} + \frac{11}{145} a - \frac{54}{145}$, $\frac{1}{798056800} a^{11} + \frac{520213}{798056800} a^{10} - \frac{2918511}{798056800} a^{9} - \frac{2757359}{798056800} a^{8} - \frac{5990701}{798056800} a^{7} + \frac{5091319}{798056800} a^{6} - \frac{214856883}{798056800} a^{5} - \frac{79301903}{159611360} a^{4} + \frac{22794169}{399028400} a^{3} + \frac{3780253}{79805680} a^{2} + \frac{2360174}{24939275} a - \frac{537867}{2433100}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36152561.893 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $A_4:C_4$ |
| Character table for $A_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.6728.1 x3, 6.6.362127872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $29$ | 29.12.10.3 | $x^{12} + 232 x^{6} + 22707$ | $6$ | $2$ | $10$ | $C_3 : C_4$ | $[\ ]_{6}^{2}$ |