Normalized defining polynomial
\( x^{12} - 138 x^{10} - 1000 x^{9} - 345 x^{8} + 14880 x^{7} + 33012 x^{6} - 36720 x^{5} - 121905 x^{4} + 7200 x^{3} + 83862 x^{2} + 5400 x - 5751 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1983953888340397738015626127097856=2^{14}\cdot 3^{10}\cdot 7^{8}\cdot 596427121^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $595.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 596427121$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{336} a^{6} - \frac{1}{28} a^{5} + \frac{3}{112} a^{4} - \frac{1}{21} a^{3} + \frac{3}{16} a^{2} - \frac{11}{28} a + \frac{29}{112}$, $\frac{1}{672} a^{7} - \frac{1}{672} a^{6} - \frac{13}{224} a^{5} - \frac{1}{672} a^{4} + \frac{55}{672} a^{3} + \frac{19}{224} a^{2} - \frac{13}{32} a + \frac{67}{224}$, $\frac{1}{1344} a^{8} - \frac{1}{84} a^{5} - \frac{15}{224} a^{4} + \frac{3}{28} a^{3} + \frac{3}{14} a^{2} + \frac{1}{7} a - \frac{173}{448}$, $\frac{1}{8064} a^{9} - \frac{1}{2688} a^{8} + \frac{1}{1008} a^{6} + \frac{19}{448} a^{5} - \frac{3}{64} a^{4} + \frac{1}{56} a^{3} + \frac{3}{16} a^{2} + \frac{39}{128} a - \frac{155}{896}$, $\frac{1}{16128} a^{10} + \frac{1}{5376} a^{8} + \frac{1}{2016} a^{7} - \frac{1}{896} a^{6} - \frac{41}{672} a^{5} - \frac{83}{896} a^{4} + \frac{73}{672} a^{3} + \frac{265}{1792} a^{2} - \frac{15}{32} a + \frac{59}{1792}$, $\frac{1}{677376} a^{11} - \frac{1}{75264} a^{10} + \frac{1}{25088} a^{9} - \frac{235}{677376} a^{8} + \frac{1}{112896} a^{7} - \frac{5}{5376} a^{6} + \frac{109}{1792} a^{5} + \frac{1775}{37632} a^{4} + \frac{1489}{75264} a^{3} + \frac{10919}{75264} a^{2} + \frac{1513}{25088} a + \frac{9991}{25088}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35339558705200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{12}$ (as 12T300):
| A non-solvable group of order 239500800 |
| The 43 conjugacy class representatives for $A_{12}$ |
| Character table for $A_{12}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 596427121 | Data not computed | ||||||